
Deep Generative Modeling for Scene Synthesis via Hybrid
Representations

ZAIWEI ZHANG, ZHENPEI YANG, The University of Texas at Austin, USA
CHONGYANG MA, Kuaishou Technology, China
LINJIE LUO, ByteDance Inc.
ALEXANDER HUTH, ETIENNE VOUGA, QIXING HUANG, The University of Texas at Austin, USA

Fig. 1. For each block, we show a randomly generated scene (top) and its closest scene (bottom) in the training set according to the matrix encoding. Our
approach can generate realistic and diverse 3D scenes that are not present in the training dataset.

We present a deep generative scene modeling technique for indoor environ-
ments. Our goal is to train a generative model using a feed-forward neural
network that maps a prior distribution (e.g., a normal distribution) to the
distribution of primary objects in indoor scenes. We introduce a 3D object
arrangement representation that models the locations and orientations of
objects, based on their size and shape attributes. Moreover, our scene repre-
sentation is applicable for 3D objects with different multiplicities (repetition
counts), selected from a database. We show a principled way to train this
model by combining discriminative losses for both a 3D object arrangement
representation and a 2D image-based representation. We demonstrate the
effectiveness of our scene representation and the network training method

Authors’ addresses: Zaiwei Zhang, Zhenpei Yang, The University of Texas at Austin,
2317 Speedway, Austin, TX, 78712, USA; Chongyang Ma, Kuaishou Technology, Beijing,
China; Linjie Luo, ByteDance Inc. Alexander Huth, Etienne Vouga, Qixing Huang, The
University of Texas at Austin, 2317 Speedway, Austin, TX, 78712, USA.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART1 $15.00
https://doi.org/0000001.0000001_2

on benchmark datasets. We also show the applications of this generative
model in scene interpolation and scene completion.

CCS Concepts: • Computing methodologies → Mesh geometry mod-
els;

Additional Key Words and Phrases: scene synthesis; generative modeling;
generative adversarial network; hybrid 3D representations

ACM Reference Format:
Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, and Alexander
Huth, Etienne Vouga, Qixing Huang. 2020. Deep Generative Modeling for
Scene Synthesis via Hybrid Representations. ACM Trans. Graph. 37, 6, Arti-
cle 1 (July 2020), 21 pages. https://doi.org/0000001.0000001_2

1 INTRODUCTION
Developing automatic tools to generate 3D scenes is a long-standing
problem in computer graphics. This problem is challenging because
3D scenes show great variabilities in the appearing objects and their
shapes, locations and orientations. Existing 3D scene generation
approaches [Chaudhuri et al. 2013, 2011; Fisher et al. 2012; Ha and
Eck 2017; Izadinia et al. 2016; Kermani et al. 2016; Li et al. 2017; Liu
et al. 2014; Ritchie et al. 2016; Sharma et al. 2017; Wang et al. 2018a;

2020-12-04 17:41. Page 1 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2


1:2 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

Zou et al. 2017] have predominantly focused on using recursive
schemes, i.e., they start from a root object, and iteratively insert
new objects into the scene while preserving spatial relations among
the objects. Those methods include the early works on query-based
data-driven scene synthesis [Chaudhuri et al. 2013, 2011; Fisher et al.
2012] to more recent works that use neural networks to model the
recurrent synthesis procedure [Sharma et al. 2017; Wang et al. 2018a;
Zou et al. 2017]. However, such recurrent schemes are inherently
sub-optimal because existing objects in the scene are not modified
after inserting new models or otherwise one has to run costly global
optimization to jointly optimize the scene layout (c.f. [Fisher et al.
2012; Yu et al. 2011]). In addition, these approaches do not explicitly
establish a mapping, e.g., from a latent parameter space to the space
of 3D scenes, making them not suited for applications such as scene
interpolation and scene extrapolation.

In this paper, we introduce an approach that generates a 3D scene
using a feed-forward neural network. This network takes a random
sample from a prior distribution in the latent space as input and
outputs a 3D scene described as an arrangement of objects. This
setting is applicable to typical internet 3D scenes that are given
by flat organizations of objects and do not possess hierarchical
decompositions of objects. In addition, a feed-forward parame-
terization of 3D scenes enjoys many direct applications such as
3D scene completion and 3D scene reconstruction via constrained
optimization. However, training a feed-forward 3D scene generator
poses several great challenges, including parameterizing 3D scenes
to encode both the continuous and discrete variabilities of 3D scenes,
developing suitable neural networks and training procedures to
capture geometric correlations among multiple objects, and training
fromunorganized 3D scenes that do not obviously possess consistent
orientations and scalings.

Our approach addresses the challenges of learning a feed-forward
3D scene generator by combining three key ideas, ranging from
representations of 3D scenes, network design and training, and
joint learning of scene generators and poses of the scenes used for
training the generator. Specifically, to parameterize a 3D scene, we
maintain a superset of abstract objects. Each scene is represented
by selecting a subset of objects, and then determining the geometric
shape, location, size and orientation of each object. This allows
us to parameterize a 3D scene as a matrix, where each column
specifies whether the corresponding object appears in the scene or
not, and if so, its geometric attributes. In particular, we introduce
latent permutation variables to factor out the invariance of this
representation when shuffling the columns of this matrix. Given this
matrix encoding, we introduce a sparse-dense generative network
for generating 3D scenes. This network design effectively addresses
the overfitting issue that exists in fully connected networks while
simultaneously preserves its expressive power. To further enhance
the quality of the resulting 3D generator, we train the network by
combining two loss terms, each of which is based on a particular
geometric representation. The first loss term employs a standard
VAE-GAN [Larsen et al. 2016] loss under the matrix encoding.
The second loss term projects the generated scenes onto an image
domain and uses discriminators with convolution layers to capture
geometric relations among adjacent objects. Moreover, instead of

fixing the scenes for training the 3D generator, we introduce la-
tent pose variables for the training instances and optimize them
together with the 3D generator, making our approach applicable
when training from unorganized 3D scene collections. We show
how to integrate these ideas into a single objective function for
learning the scene generator and perform alternating minimization
to solve the induced optimization problem.
We have applied our approach on synthesizing living rooms

and bedrooms using the SUNCG dataset [Song et al. 2017]. The
living room and bedroom categories consist of 6401 and 8054 scenes
respectively. For each category, we use 6000 and 7000 scenes for
training respectively and leave the remaining scenes as testing. Our
approach trains 3D scene generators in 1,001 minutes and 1,198
minutes, respectively, using a desktop with 3.2GHZ CPU, 64GB
main memory and a GTX 1080 GPU. The trained generators can
synthesize diverse and novel 3D scenes that are not present in the
training sets (See Figure 1). Synthesizing one scene takes 30 ms. We
present quantitative evaluations to justify our design choices. We
also show the usefulness of the approach on applications of scene
interpolation/extrapolation and scene completion.

In summary, we present the following main contributions:

• We show that it is possible to train a feed-forward parametric
generative model that maps a latent parameter to a 3D indoor
scene. The 3D scene is represented as an arrangement of 3D
objects, and each category of objects may repeat multiple
times.

• We introduce a methodology for 3D scene synthesis using
hybrid representations, which combines a 3D object arrange-
ment representation for capturing coarse object interactions
and an image-based representation for capturing local object
interactions.

2 RELATED WORKS
Hand-crafted generative models. Early work in parametric shape

modeling consists of shapes designed by domain experts. Examples
include work for trees [Weber and Penn 1995] and Greek doric
temples [Teboul 2011]. It can be prohibitively difficult, however, for
humans to model complicated object classes that exhibit significant
geometric and/or topological variability. For this reason, parametric
models (or procedural models) formanymodel classes (e.g., furniture
shapes and scenes) do not exist.

Learning generative models. To faithfully capture shape variability
in geometric data, a recent focus in visual computing is to learn
parametric models from data. This trend is aligned with the signif-
icant growth of visual data available from online resources such
as ImageNet [Deng et al. 2009] and ShapeNet [Chang et al. 2015].
Methods for learning parametric models differ from each other
in terms of the representation of the visual data as well as the
mapping function. Early works on learning parametric models focus
on Faces and Human bodies [Allen et al. 2003; Anguelov et al. 2005;
Blanz and Vetter 1999], which can be parametrized by deforming
a template model. The parametric models are given by linearly
blending exemplar models in a model collection. Such a method is
only applicable to object classes with small geometric variability and

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 2 of 1–21.



Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:3

no topological variability. They are not suitable for indoor scenes
that can exhibit significant topological and geometrical variability.

Motivated from the tremendous success of deep neural networks,
a recent focus has been on encoding the mapping function using
neural networks. In the 2D image domain, people have developed
successful methods for deep generative models such as generative
adversarial networks (GANs) [Arjovsky et al. 2017; Goodfellow et al.
2014; Salimans et al. 2016; Zhao et al. 2016], variational autoen-
coders [Kingma et al. 2016; Kingma and Welling 2013], and autore-
gression [Van Den Oord et al. 2016]. Although these approaches
work well on 2D images, extending them to 3D data is highly non-
trivial. A particular challenge is to develop a suitable representation
for 3D data.

3D representations. Unlike other modalities that naturally admit
vectorized representations (e.g., images and videos), there exists
great flexibility when encoding 3D geometry in their vectorized
forms. In the literature, people have developed neural networks for
multi-view representations [Qi et al. 2016; Su et al. 2015; Tatarchenko
et al. 2016], volumetric representations [Häne et al. 2017; Klokov and
Lempitsky 2017; Riegler et al. 2017; Tulsiani et al. 2017a; Wang et al.
2017; Wu et al. 2016, 2015], point-based representations [Qi et al.
2017], part-based representations [Li et al. 2017; Tulsiani et al. 2017b],
graph/mesh representations [Henaff et al. 2015; Masci et al. 2015;
Monti et al. 2017; Yi et al. 2016] and spherical representations [Cao
et al. 2017; Cohen et al. 2018; Esteves et al. 2017].

Existing methods for building parametric 3D models have mostly
focused on 3D shapes. [Wu et al. 2016] describe a 3D generative
network under the volumetric representation. Extending this ap-
proach to 3D scenes faces the fundamental challenge of limited
resolution. In addition, its output is not an arrangement of objects.
[Tulsiani et al. 2017b] proposed a part-based model for synthesizing
3D shapes that are described as an arrangement of parts. [Nash and
Williams 2017] proposed ShapeVAE for synthesizing 3D shapes that
are described as a semantically labeled point cloud. Both approaches
are specifically tailored for 3D shapes, and it is challenging to
extend them to 3D scenes. For example, both approaches require
that shapes are consistently oriented, and such orientations are not
available for 3D scenes. In our approach, we jointly optimize both
the generators and the orientations of the input scenes. In addition,
we found that variations in 3D scenes are more significant than 3D
shapes, and approaches which work well on shapes generally lead
to sub-optimal results on 3D scenes, e.g., spatial relations between
correlated objects are not capturedwell. Thismotivates us to develop
new representations and training methods for 3D scenes.
The difference between our approach and existing 3D synthesis

approaches is that we combine training losses under two representa-
tions, i.e., an object arrangement representation and an image-based
representation. This innovative design allows us to obtain globally
meaningful and locally compatible synthesis results.

Assembly-based geometric synthesis. Currently the dominant 3D
scene synthesis method is assembly-based. [Funkhouser et al. 2004]
introduced the first system that generates new 3D models by as-
sembling parts from existing models. People have also applied

this concept for various applications such as interactive model-
ing [Kreavoy et al. 2007], design [Chaudhuri and Koltun 2010], re-
construction [Huang et al. 2015; Shen et al. 2012], and synthesis [Xu
et al. 2012]. The advantage of these methods is that they can handle
datasets with significant structural variability. The downside is that
these methods require complicated systems and careful parameter
tuning. To improve system performance, a recent line of works
utilize probabilistic graphical models (e.g., Bayesian networks) for
assembly-basedmodeling and synthesis [Chaudhuri et al. 2013, 2011;
Chen et al. 2014; Fisher et al. 2012; Izadinia et al. 2016; Kalogerakis
et al. 2012; Kermani et al. 2016; Liu et al. 2014; Merrell et al. 2010;
Sung et al. 2017; Xu et al. 2013]. Along this line, several works [Fisher
et al. 2015; Jiang et al. 2012; Ma et al. 2016, 2018; Qi et al. 2018;
Savva et al. 2016; Shao et al. 2012; Wang et al. 2018b, 2019; Zhu et al.
2018] focus on using human interactions with objects and/or human
actions to guide the synthesis process. These methods significantly
stabilize the modeling and synthesis process. The nodes and edges
in the graphical models, however, are usually pre-defined, which
necessitates significant domain knowledge.

Another recent line of works [Ha and Eck 2017; Li et al. 2017, 2019;
Ritchie et al. 2016, 2019; Sharma et al. 2017; Wang et al. 2018a; Zou
et al. 2017] reformulate assembly-based synthesis as recursive pro-
cedures. Starting from a root part, these methods recursively insert
new parts conditioned on existing parts. This conditional probability
is described as a neural network. In contrast, our approach proposes
to learn 3D synthesis using a feed-forward network. In particular,
our approach does not require hierarchical labels (either provided by
users or generated computationally) that are required for training
such recursive procedures.
Priors learned from training data can be used for rectifying 3D

scenes as well. [Yu et al. 2011] present an optimization framework
for turning a coarse object arrangement into significantly improved
object arrangements. Our image-based discriminator loss is concep-
tually similar to this approach, yet we automatically learn this loss
term from data.

Image-based representation for 3D synthesis. Several recent works
leverage image-based representations for 3D synthesis. In [Zou
et al. 2018], the authors leverage the image-based representation
to predict the locations of key objects in a scene. In [Wang et al.
2018a], the authors use an image-based representation to predict
locations and other attributes of the object to be inserted. In contrast,
our approach learns a parametric 3D generator for synthesis. The
image-based representation, which serves as a regularizer for the
3D generator, is only used in the training process.

3 OVERVIEW
In this section, we give an overview of the 3D scene synthesis
problem (Section 3.1) and of the proposed approach for solving it
(Section 3.2).

3.1 Problem Statement
Our goal is to train a neural network that takes a random variable
z ∈ Rd as input and generates a 3D scene, i.e., the parameter z
represents a low-dimensional encoding of the scene. In this paper,
we represent a scene as a collection of rigid objects arranged in space

2020-12-04 17:41. Page 3 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.



1:4 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

Input
Scene

Real
Scene

Synthe�c
Scene

Synthe�c
Topview

Real
Topview

Image
Discriminator

Projec�on

Rotate
Translate
Permute

Encoder Decoder
Gθ (z)MM

P(Gθ (z))DϕI

Dϕ

P(M)

P P

z

GθE Gθ

Fig. 2. Illustration of differentmodules of our design. Encoder (GθE ) encodes
the input scene to latent embedding, Decoder (Gθ ) generates scene data
matrices based on latent embedding, Scene Discriminator (Dϕ ) classifies if
the input scenes are real or not, P means the projection layer which projects
3D scenes to 2D top-view images, and Image Discriminator (DϕI ) classifies
if the input top-view images are real or not.

in a semantically meaningful way, and free of interpenetration. We
assume each object belongs to one of a predefined set of object
classes, and that objects within each class can be parameterized
by a shape descriptor (this descriptor is then used to retrieve the
object’s 3D geometry from a shape database). We further assume
that objects rest on the ground, and are correctly oriented with
respect to the vertical direction, so that each object’s placement in
the scene can be specified by an orientation and position in the xy
plane (the top view), as well as a nonuniform scaling. We formalize
the scene representation in Section 4.1.

To train our networks, we use N different 3D scenes S1, · · · , SN
gathered from SUNCG [Song et al. 2017]. We do not require that
the scenes are globally oriented in a consistent way, that objects
are specified in any particular order, etc; our training formulation
is robust to such variations. In addition, our approach does not
require additional local or global supervision such as a hierarchical
grouping of objects in a scene.

3.2 Approach Overview
There are three key factors in training a high-quality 3D generator
described above: (1) How to parameterize 3D scenes; (2) How to
design and train the 3D scene generator; and (3) How to train
the generator from unorganized scene collections. Our approach
parameterizes a 3D scene by selecting objects from an over-complete
set of objects, allowing us to parameterize a 3D scene as a matrix,
whose elements specify which objects appear and their locations,
orientations, sizes and geometric attributes. The key contribution of
this paper is on how to design and train the 3D generator. Under the
matrix representation, a typical strategy is to use fully connected
layers to design the generator network. Such a network architec-
ture, however, easily leads to overfitted 3D generators with poor
generalization behavior. We present two key innovations. The first
one is to use a sparse-dense network to encode the 3D generator,
which greatly improves the generalization behavior. The second one

is to project a generated 3D scene onto an image domain, i.e., on the
ground-plane along the vertical direction, and use a discriminator
with convolution layers to capture fine-grained spatial correlations
among the input objects. This discriminator can improve the quality
of the 3D generator considerably. In other words, we train the 3D
scene generator under a hybrid representation, which allows us to
add the strength of the learned features under each representation
together (see Figure 2). Finally, to handle unorganized scene collec-
tions we introduce a pose variable for each scene in the training
set and perform alternating minimization to optimize the scene
poses and the 3D scene generator and affiliated variables (e.g, the
discriminators).

The remainder of this section summarizes the design and motiva-
tion of each component of our design, and Section 4 will spell out
the technical details.

Object arrangement scene representation. We represent a 3D ar-
rangement using a matrix whose columns correspond to the ob-
jects in the scene. In other words, each 3D scene is specified by
selecting some number of objects of each object class and then
arranging/fixing them in 3D space. Each column of the matrix
representation describes the status of the corresponding object,
namely, whether it appears in the scene or not, its location, size,
orientation and shape. Notice that while each matrix completely
specifies a 3D scene, this representation is redundant. To handle
the technical challenge of non-uniqueness of this encoding (i.e.,
shuffling columns of the same category leads to the same scenes),
we introduce latent permutation variables which effectively factor
out such permutation variability.

Scene generator. We design the scene generator as a feed-forward
network with interleaved sparsely and fully connected layers op-
erating on the matrix representation of scenes. The motivation for
this architecture comes from the observations that (1) correlations
among objects in an indoor scene are usually of low-order, and (2)
sparsely connected layers have significantly reduced model size
compared to fully connected networks, which reduces generaliza-
tion error.

Image-based module. We leverage a CNN-based discriminator
loss, which captures the object correlations based on local object ge-
ometry that cannot be effectively captured by the matrix-encoding-
based discriminator loss. Specifically, we encode each 3D scene as a
2D projection of the objects onto the xy plane. We impose a CNN-
based image discriminator loss on this 2D image, which is back
propagated to the scene generator, forcing it more accurately learn
local correlation patterns.

Joint scene alignment. Despite our fairly intuitive network design,
training the network from unorganized scene collections is difficult.
One challenge is that the training scenes are not necessarily globally
oriented in a consistent way, nor do objects have consistent absolute
locations. Moreover, although objects can be grouped by class, there
is no canonical ordering of objects within the same class. To address
these issues, we solve a global optimization problem to jointly align
the input scenes in a training preprocessing step. We found that
first aligning the input scenes significantly improves the resulting
3D scene generator.

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 4 of 1–21.



Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:5

Existence
Location

Size

Orientation

Descriptor

S M v

Fig. 3. Illustration of our scene encoding scheme. Existence determines if
the object is in the scene or not. Location, Size and Orientation represent
the 3D location, Size and Orientation of the object. Descriptor represents
the shape geometry of the object.

Network training. Given roughly aligned input scenes, we learn
the generator by optimizing an objective function that combines an
autoencoder loss and the two discriminator losses described above.
The variables include the generator network, two discriminators,
the pose of each scene, and the orderings of the objects in each 3D
scene. To facilitate the optimization, we introduce a latent variable
for the scene that characterizes its underlying configuration (i.e.,
after transformation and object re-ordering). Both the autoencoder
loss and discriminator losses are defined on this latent variable.
In addition, we penalize the difference between this latent scene
and its corresponding input scene (after transformation and object
re-ordering). In doing so, the optimization variables are nicely decou-
pled, allowing efficient optimization via alternating minimization.

4 APPROACH
In this section, we present technical details of our approach. In
Section 4.1, we present a matrix representation of 3D object ar-
rangement. In Section 4.2 and Section 4.3, we describe the 3D object
arrangement module and the image-based module, respectively. In
Section 4.4, we introduce how to jointly align the input scenes.
Finally, we describe network training procedure in Section 4.5.

4.1 Scene Representation
To parameterize 3D scenes, we assume each object belongs to one
of nc object categories, and that scenes can contain up tomk ob-
jects of each class k . Each scene therefore contains a maximum of
no =

∑nc
k=1mk objects O. In our experiments, we use nc = 30 and

mk = 4, 1 ≤ k ≤ nc (see Section 5 for details). Note that another
alternative encoding is to allow no total number of arbitrary objects
(c.f. [Fan et al. 2017; Tulsiani et al. 2017b]). However, we found that
explicitly encoding the class label of each object is more efficient
than synthesizing the class label of each object, particularly when
the number of distinctive classes is large. In fact, we otherwise
have to introduce one additional element for each class and a large
permutation matrix for each scene whose dimension is equal to the
total number of objects.
We assume that objects in each class can be uniquely identified

with a d-dimensional shape descriptor, with d constant across all
classes. We can thus encode each object o ∈ O using a status vector
vo ∈ Rd+9:

• vo0 is a tag that specifies whether o appears in the scene (vo0 ≥

0.5) or not (vo0 < 0.5).
• (vo1 ,v

o
2 ,v

o
3 )
T specifies the center of the bounding box of o in

a world coordinate system; we assume the up orientation of
each object is always along the z-axis of this world coordinate
system.

• (vo4 ,v
o
5 )
T specifies the front-facing orientation of the bound-

ing box of o in the top view (xy plane).
• vo6 , v

o
7 , and v

o
8 specify the size of the bounding box of o in

the front, side, and up directions, respectively.
• (vo9 , · · · ,v

o
d+8)

T is the aforementioned descriptor that charac-
terizes the geometric shape of c . In this paper, we use as our de-
scriptor the second-to-last layer of the volumetric module of
Qi et al. [Qi et al. 2016] pre-trained on ShapeNetCore [Chang
et al. 2015].

Given this object representation, a 3D scene can be parameterized by
a matrix M ∈ R(d+9)×no , with blocks of columns Mk ∈ R(d+9)×mk

containing the status vectors of the objects of the k-th category.
One technical challenge of this intuitive encoding of 3D scenes is

that it is invariant to permutations of columns of theMk . In addition,
the location and orientations of each object are dependent on the
global pose of each scene. In light of this observation, we introduce
two operators on the matrix encodingM .
The first operator applies column permutations σk to objects of

each class:

S(M ;σ1, . . . ,σnk ) :

R(d+9)×no ×

nc∏
k=1

Smk → R(d+9)×no[
M1 · · · Mnc

]
7→

[
M1σ1 · · · Mncσnc

]
To avoid clutter, in what follows we elide the explicit dependence
of S on the σ . Note that S applies permutations to objects of each
class independently.

The second operatorT(M ;R, t) applies a rotationR ∈ SO(2) about
the z axis, and an arbitrary translation t ∈ R3, to the bounding box
position encoded within each column ofM , and likewise applies R to
each object orientation. Again, we will elide R and t for convenience.
We associated a set of latent variables {σk ,R, t} to each scene i;

we will use the notation Si , Ti , etc, to denote the permutation latent
variables and the transformation latent variables.

We factor out permutations of objects and the global pose of each
input scene by introducing a latent matrix encodingMi ∈ R

(d+9)×no

for each scene i . The antoencoder and discriminator losses described
below will be imposed on Mi , and we enforce consistency of Mi
andMi by minimizing the loss term below:

fd

(
Mi ,Mi

)
= min

Ti ,Si




Mi − (Ti ◦ Si ) (Mi )



2
F
, (1)

where ∥ · ∥F denotes the matrix Frobenius norm. Initialization and
optimization of the latent permutation and rigid transformation
variables are described below in section 4.4.

4.2 3D Object Arrangement Module
At the heart of our design are two networks:

2020-12-04 17:41. Page 5 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.



1:6 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

120 × (d + 9) 200 × 10 20 × 10 80 × 20 10 × 20 20 × 20 4 × 20 z
SC FC SC FC SC

FC FC

Fig. 4. This figures illustrates the network module that is used for the encoder GθE . The decoder Gθ is reversed from the encoder GθE . The arrangement
discriminator Dϕ shares the same network architecture but replaces the latent vector by a value. This network module interweaves between sparsely
connected (or SC) layers and fully connected (or FC) layers.

Fig. 5. Visual comparisons between synthesized scenes using different
generators. Left (5a): training a fully connected generator network; Left
(5b): training a fully convolutional generator network; Right (5c): training a
sparsely connected generator network; Right (5d): training a combination
of sparsely connected generator network and an image-based discriminator.
Unreasonable object placements in 5c are marked with red circles. (The
fourth columnwas generated by directly optimizing the scenes in the second
column so that the trained image-based discriminator predicts them to be
real.)

• the encoder network GθE : R(d+9)×no → Rk , and
• the decoder network Gθ : Rk → R(d+9)×no .

Since our matrix encoding of 3D scenes is essentially a vectorized
representation (in contrast to an image-based representation), it is
natural to use fully connected (FC)-type layers for both the generator
network and the encoder network. However, we observed that the
naive approach of connecting all pairs of nodes between consecutive
layers does not work. Our experiments indicated that this approach
easily overfits the training data, so that the generated scenes are of
poor quality (See Figure 5(a)). In addition, we have used convolution
layers instead of the FC-type layers, by considering matrix encod-
ing as gray scale image representation. Our experiments indicated
that this approach does not learn pairwise object relations (See
Figure 5(b), Figure 12 and Figure 13).

To address this overfitting issue, we propose to use sparsely
connected layers. Each node of one layer is only connected to h
nodes of the previous layers. In our implementation, we seth = 4 and
randomize the connections, i.e., each node independently connects
with a node in the previous layer with probability h/L, where L is
the number of nodes in the previous layer. As illustrated in Figure 4,
our network interleaves between sparsely connected layers and
fully connected layers. We still keep some fully connected layers
to give the network sufficient expressiveness for network fitting.
Note that the connections between nodes remain fixed during the
training process.

There are twomotivations for using sparsely-connected layers for
Gθ . First, patterns in 3D scenes usually involve small groups of ob-
jects [Fisher and Hanrahan 2010; Fisher et al. 2012, 2011], e.g. chairs
and tables, or nightstands and beds, so that sparse relationships
between object classes are expected. Second, from the perspective
of optimization, sparsely-connected networks have significantly
reduced model size, and thus tend to avoid overfitting and have
improved generalization. In the broader picture, neural networks
exhibit exponential expressiveness (c.f. [Poole et al. 2016]), and
training compressed networks yield comparable and sometimes
better generalization performance [Han et al. 2015, 2016].

Following DCGAN [Radford et al. 2015], we set the architecture
of Gθ to the reverse of that of GθE . We use VAE-GAN [Larsen et al.
2016] for training both the encoder and decoder networks:

fo =
1
N

N∑
i=1




GθGθE (Mi ) −Mi




2
F
+ KL

(
{GθE

(
Mi

)
},p

)
+ λ

(
1
N

N∑
i=1

Dϕ

(
Mi

)
− Ez∼pDϕ [Gθ (z)]

)
. (2)

where the latent distributionp is the standard normal distribution,
and the discriminatorDϕ has the same network architecture as GθE ,
except that we replace the latent vector by one node.

4.3 Image-Based Module
As discussed in the overview, we introduce a second, image-based
discriminator to better capture local arrangement of objects based
on geometric detail, such as the spatial relations between chairs
and tables and those between nightstands and beds in generated
scenes. In our experiments, we found that it is hard to precisely

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 6 of 1–21.



Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:7

capture such patterns by merely using FC-type discriminators Dθ .
As illustrated in Figure 5(c), without the image-based module, the
learned object arrangement generator Gθ exhibits various local
compatibility issues (e.g., objects intersect with each other).
Motivated by the fact that CNN-based discriminators [Radford

et al. 2015] can nicely capture local interaction patterns among adja-
cent objects, we propose to convert the 3D object arrangement into
a 2D image by projecting the 3D scene onto the top view, and to then
impose a CNN-based discriminator on this 2D image. Specifically,
let P : R(d+9)×no → Rr×r be the projection operator onto an r × r
image (r = 128, and details of the projection operator are described
in detail below). Denote DϕI as the discriminator for the image-
based representation, whereϕI represents the network parameter. In
our experiments, we used ResNet-18 [He et al. 2016], an established
CNN network capable of capturing multi-scale patterns of an image,
as our discriminator.
We then use the following discriminator loss for learning the

object arrangement generator:

fI =
1
N

N∑
i=1

DϕI

(
P

[
Mi

] )
− Ez∼pDϕI (P [Gθ (z)]) . (3)

Rather than projecting the 3D scene to the top view, another option
is to convert the scene to a volumetric grid and impose 3D CNN-
based discriminator. However, this approach has severe limits on
tractable grid resolution (e.g. 643) and cannot accurately resolve
local geometric detail. On the other hand, most local correlations
are revealed in the top view [Wang et al. 2018a; Zou et al. 2018],
which provides sufficient supervision for learning the generator.

Although it is possible to use a rendering operator for the projec-
tion P, as as described by Wang et al. [Wang et al. 2018a], we want
the image-based discriminator DϕI to provide smooth gradients
for the generator Gθ , and such gradients are hard to compute
even when using very simple rendering operations. We therefore
instead define a fuzzy projection operator P in terms of summed
truncated signed distance fields of objects projected into the top
view. Specifically, for each object o, let Eo (M) denote the set of points
in the plane computed by (1) embedding object o in 3D as encoded
by the parameters inM , and (2) orthogonally projecting that object
onto the xy plane. Denote the truncated signed distance function of
object o by

do,δ : R2 → R

p 7→


d[p, ∂Eo (M)], d[p, ∂Eo (M)] ≤ δ , p < Eo (M)

−d[p, ∂Eo (M)], d[p, ∂Eo (M)] ≤ δ , p ∈ Eo (M)

0, d[p, ∂Eo (M)] > δ .

Let d Io,δ ∈ Rr×r be the rasterization of do,δ onto an r × r image. We
then define the projection operator as

P(M) :=
∑
o∈M

cod
I
o,M , (4)

where co is a class-specific constant associated with object o. In our
implementation, we simply use the index of the category label of o
(See Appendix D). For fixedM , the gradient of P(M) with respect
toM can be computed; see Appendix C for details.

4.4 Joint Scene Alignment
As a preprocessing step, we align all input training scenes, by assign-
ing each scene a rigid transformation and set of permutations, as de-
scribed in section 4.1. We follow the common two-step procedure for
establishing consistent transformations (maps) across a collection of
objects [Huang et al. 2006; Huang and Guibas 2013; Huber 2002; Kim
et al. 2012], namely, we first perform pairwise matching, and then
aggregate these pairwise matches into a consistent global alignment
of all scenes. A common feature of such two-step approaches is
that the second step can effectively remove noisy pairwise matches
computed in the first step [Huang and Guibas 2013], leading to high-
quality alignments. In our case, simultaneously optimizing for each
scene’s optimal rigid transformation and permutations is intractable
for large-scale data (i.e. several thousands of scenes). We therefore
propose to align the input scenes in a sequential manner, by first
optimizing rotations, then translations and finally permutations.

Pairwise matching. Given a pair of scenesMi andM j , we solve the
following optimization problem to determine the optimal transfor-
mation T in

i j =
(
Rini j , t

in
i j

)
aligningMi toMj , as well as permutations

Sin
i j mapping objects of each class in Mi to their closest match in

M j :
T in
i j ,S

in
i j = argmin

T,S




(T ◦ S)

(
Mi

)
−M j





2,1
, (5)

where ∥A∥2,1 =
m∑
j=1

∥aj ∥⋆,A := (a1, · · · , am ) is a robust norm used

to handle continuous and discrete variations betweenMi andMj .
We solve Equation (5) by combining the method of reweighted

least squares [Daubechies et al. 2010] and alternating minimization.
Since this step is not the major contribution of the paper, we defer
the technical details, as well as the precise definition of ∥∥⋆, to
Appendix B.

Computing pairwise alignments of all pairs of scenes is infeasible.
We follow the procedure of Heath et al. [Heath et al. 2010] by
connecting each scene with k = 64 neighboring scenes in the
training set. To compute these nearest neighbors, we assign to each
scene an nc -dimensional vector that counts how many objects of
each class appear in the scene, and compute nearest neighbors via
L2-distance between these vectors.

We expect some pairwise alignments to be noisy (see for instance
Figure 6). We address this issue by a second, global alignment
refinement step (map synchronization).

Consistent scene alignment. We employ state-of-the-art map syn-
chronization techniques for joint optimization of orientations, trans-
lations, and permutations associated with the input scenes. For
efficiency, we optimize orientations, translations, and permutations
in a sequential manner. For rotation synchronization, we employ the
method of Chatterjee and Govindu [Chatterjee and Govindu 2013],
which optimizes the orientation Ri associated with each scene Si
via Huber loss. For translation synchronization, we use the method
of Huang et al. [Huang et al. 2017], which applies truncated least
squares to optimize the translation of ti associated with each scene
Si . Finally, we employ normalized spectral permutation synchroniza-
tion [Shen et al. 2016] to optimize the permutation σi,k associated
with each category ck of each scene Si . Since our approach directly

2020-12-04 17:41. Page 7 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.



1:8 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

applies these techniques, we refer to these respective papers for
technical details.

Note that all of these approaches can tolerate a significant amount
of noise in the pairwise alignments. As a result, alignments substan-
tially improve after the map synchronization step (See Figure 6).
The bottleneck for the scene alignment step is performing pair-wise
scene alignments, whose complexity isO(m), wherem is the number
of pair-wise alignments. In our experiments, the alignment process
takes around 6 hours for 7000 bedroom scenes, and the alignment
process takes around 5 hours for 6000 living room scenes.

4.5 Network Training
Finally, given the consistently aligned scenes, we proceed to learn
the object arrangement generator Gθ , the object arrangement en-
coder GθE , and the two discriminators Dϕ and DϕI . Combining
equations (1)), (2), and (3), we arrive at the following objective
function:

max
ϕ,ϕI

min
θ,θE

1
N

N∑
i=1




GθGθE (
Mi

)
−Mi




2
F

+
γ

N

N∑
i=1

min
Ti ,Si




Mi − (Ti ◦ Si ) (Mi )



2
F

+ λ

(
1
N

N∑
i=1

Dϕ

(
Mi

)
− Ez∼pDϕ [Gθ (z)]

)
+ KL

({
GθE

(
Mi

)}
,p

)
+ µ

(
1
N

N∑
i=1

DϕI

(
P(Mi )

)
− Ez∼pDϕI (P [Gθ (z)])

)
. (6)

In this paper, we set λ = 1, µ = 1, and γ = 100. The large value in γ
ensures thatMi andMi encode approximately the same scene.
Equation (6) is challenging to solve since the objective function

is highly non-convex (even when the discriminators are fixed). We
again apply alternating minimization for optimization, so that each
step solves an easier optimization sub-problem.

4.5.1 Alternating Minimization. We perform two levels of alter-
nating minimization. The first level alternates between optimizing{
Mi ,Si ,Ti ,θ ,θE

}
and the discriminators {ϕ,ϕI }. In the former case,

a second level of alternation switches between optimizing θ ,θE , the
Mi , the Si and the Ti .

Generator optimization. When ϕ, ϕI , the Si , the Ti and the Mi
are fixed, Equation (6) reduces to

min
θ,θE

1
N

N∑
i=1




GθGθE (
Mi

)
−Mi




2
F

− Ez∼pDϕ (Gθ [z)]) − µEz∼pDϕI (P [Gθ (z)]) . (7)

We apply ADAM [Kingma and Ba 2014] for optimization. In all
of our experiments, we trained θ and θE for two epochs and then
moved to optimize other variables.

Bed: Nightstand: Cabinet:

Window: Chair: Curtain:

Source (pairwise) Target Source (joint)

Source (pairwise) Target Source (joint)

Source (pairwise) Target Source (joint)

Fig. 6. This figure is best visualized in color. Each row presents the alignment
of a pair of scans using pairwise alignment (Left) and joint alignment among
7000 bedroom scenes from SUNCG [Song et al. 2017] (Right). The black
dot indicates the relative translations. For simplicity, we show 2D layouts
of each scene from the top view. Different categories of objects possess
different colors. We can see that joint alignment, which utilize information
from the entire collection to determine the pose of each scene, can rectify
pairwise misalignments induced from patterns of uncorrelated object groups.
In addition, merely aligning the bed objects is sub-optimal, as the locations
of bed exhibit significant variations (See the third row).

Latent variable optimization. When θ , θE , ϕ, ϕI , the Si and the
Ti are fixed, we can optimizeMi for each scene in isolation:

min
M i




GθGθE (
Mi

)
−Mi




2
F
+ γ




Mi − Ti (Si (Mi ))



2
F

+ λDϕ

(
Mi

)
+ µDϕI

(
P(Mi )

)
We apply ADAM [Kingma and Ba 2014] for optimization. Since the

value of γ is large, the convex potential γ



Mi − Si (Mi )




2
F
strongly

dominates the other terms. In our experiments, we found this step
usually converges in 8-12 iterations.

Permutation optimization. When theMi , the Ti , θ , θE , ϕ and ϕI
are fixed, we can optimize σi,k in each Si in isolation:

σ⋆i,k = argmin
σi,k ∈Smk




T−1
i (Mi,k ) −Mi,kσi,k




2
F
, (8)

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 8 of 1–21.



Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:9

for 1 ≤ k ≤ nc , 1 ≤ i ≤ N . It is easy to see that Equation (8) is
equivalent to

σ⋆i,k = argmax
σi,k ∈Smk

〈
σi,k ,T

−1
i

(
Mi,k

)
MT
i,k

〉
which is a linear assignment problem, and can be solved exactly
using the Hungarian algorithm.

Transformation optimization. When theMi , the Si , θ , θE , ϕ and
ϕI are fixed, we can optimize each Ti in isolation:

T⋆
i = argmin

Ti




Mi − Ti (Si (Mi ))



2
F
. (9)

Equation (9) can be formulated as rigid point cloud alignment with
known correspondences (orthogonal Procrustes), and we use the
closed-form solution described by Horn [Horn 1987].

Discriminator optimization. Finally, when the Mi , the Si , θ and
θE are fixed, the discriminators can be optimized independently as
follows:

min
ϕ

1
N

N∑
i=1

Dϕ

(
Mi

)
− Ez∼pDϕ (Gθ (z))

min
ϕI

1
N

N∑
i=1

DϕI

[
P

(
Mi

)]
− Ez∼pDϕI (P [Gθ (z)]) .

In our experiments, we trained both discriminators for 10 epochs in
each alternating minimization.

Termination of alternating minimization. In all of our experiments,
we use t innermax = 10 iterations for the inner alternating minimization
(i.e., of θ ,θE , theMi , the Si , and the Ti ) and toutermax = 10 iterations of
the outer alternating minimization (between the set of preceding
variables and {ϕ,ϕI }).

5 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of the pro-
posed approach. In Section 5.1, we describe the experimental setup.
From Section 5.2 to Section 5.5, we analyze the results of our ap-
proach. Section 5.6 and Section 5.7 present the applications our
approach in scene interpolation and scene completion, respectively.

5.1 Experimental Setup
Dataset. We perform experimental evaluation on two room types

extracted from SUNCG [Song et al. 2017]: Bedroom and Living Room.
SUNCG contains a large number of 3D scenes created by online
users using the Planner5d interior design tool [Planner5d 2017].
SUNCG contains more than 45,000 3D scenes, and each scene is
segmented into different room types. In this work, we used the 30
most frequent classes. Please refer to Appendix D for the names
of these classes and other statistics. For each class, we constrain
that the maximum repetition of an object category is 4, and for
each room, we constrain that the number of objects must be higher
than 15 for bedroom and higher than 13 for living room. Using
higher number of object count helps to extract scenes with more
features, and the numbers are chosen empirically so that we have
more than 6000 training instances, which is enough for the network

to learn scene semantics based on the experimental results. We do
not constrain the shape of the rooms. Please refer to Appendix D
for the statistics on room geometry in the training datasets. We
use these constraints to gather all suitable scenes (i.e., all objects
fall in those 30 most frequent classes and the largest repetition
count is 4, and the number of objects). In total, we collect 8054
and 6401 Bedroom and Living Room scenes, respectively. We select
7000 and 6000 scenes for training, for bedroom and living room
respectively. The remaining scenes are left for testing. We directly
use the 3D models associated with SUNCG as the shape database
for our approach.

Baseline approaches. Since we are unaware of any existing meth-
ods that have the exact input and output settings as our approach,
we perform evaluation against variants of our approach:

• Baseline I: The first baseline removes the image-based module
and the scene discriminator, and only applies VAE on the
object arrangement representation.

• Baseline II: The second baseline removes the image-based
module and only applies VAE-GANon the object arrangement
representation.

• Baseline III: The third baseline removes the image-based mod-
ule and changes all the sparse fully connected layers to fully
connected layers. For fair comparison, we use similar number
of parameters compared to Baseline II.

• Baseline IV: The fourth baseline removes the image-based
module and applies all convolution layers for the VAE-GAN
architecture. The architecture for encoder and scene discrim-
inator is the same as the discriminator used in DCGAN [Rad-
ford et al. 2015], and the architecture for decoder is the same
as the generator used in DCGAN.

In Section 5.7, we compare our approach with two state-of-the-art
data-driven scene synthesis [Fisher et al. 2012; Kermani et al. 2016]
for the task of scene completion.

5.2 Experimental Results
Figure 1, Figure 7, and Figure 8 show randomly generated scenes
using our approach. The overall quality matches that of the training
data (the quantitative evaluation is presented in Section 5.3). The
synthesized scenes are also diverse, exhibiting large variations in
number of objects in a scene, spatial layouts, and correlated groups of
objects. Figure 9 shows the closest scenes to some generated scenes
from 1000 generated scenes. We use the Euclidean distance between
the datamatrix to find the closest pair. To better analyze the diversity
of object arrangement in generated scenes, we ignore the object
descriptor when finding the closest scenes. Note that, within 1000
generated scenes, the closest pair for some randomly selected scenes
are not the same. Although the closest scenes are similar, there are
always some changes in terms of object arrangements. To fit a
smooth manifold of training data, we expect neighboring generated
scenes to have similar but slightly different object arrangements.
The result shows that our model does not show typical overfitting
issues of generative models, which generate the same instances for
different input noise vectors, and for neighboring generated scenes,
it shows diversity in terms of object arrangements.

2020-12-04 17:41. Page 9 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.



1:10 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

Fig. 7. Randomly generated scenes of bedrooms.

Fig. 8. Randomly generated scenes of living rooms.

Figure 1 compares the generated scenes with their closest scenes
in the training data. Here we simply employ the Euclidean distance
in the latent scene space for computing closest scenes. We can see
that the generated scenes exhibit noticeable variations in spatial
object layout and object existence. This means that our approach
learns meaningful patterns in the training data and uses them for
scene synthesis, instead of merely memorizing the data.

The training loss convergence curve has been shown and analyzed
in Appendix A.

5.3 Perceptual Study
We have performed a user study to evaluate the visual quality of
our approach versus baseline approaches by following the protocol
described in [Shrivastava et al. 2016]. Specifically, for each approach
and each scene type we generate 20 scenes. For each scene, we
extract the closest scene in the training data. We then present these
20 pairs to users and ask them to choose the scene which they think
is generated. Each study is summarized using a pair of percentages
(a, 100 − a), where a indicates the percentage that scenes in the
synthetic data are marked as generated.

Figure 10 plots the statistics among our approach and the four
baseline approaches. We can see that for both the Bedroom and
Living Room datasets, our approach yields significantly better re-
sults than baseline approaches. In other words, the design choices of
using sparsely connected layers and image-based discriminator loss
are important for learning to generate realistic scenes. In addition,
our approach achieved 61.4%/38.6% and 55.6%/44.4% on Bedroom
and Living Room, respectively. Given that the training data mostly
consists of high-quality user designed scenes, these numbers are
quite encouraging, as more than 30% of the time, users favored our
synthesis results rather than user designed scenes. The study was
conducted on Amazon Mechanical Turk, and for each approach,
we showed 20 different comparisons in the survey and collected 10
surveys from different users.

5.4 What are Learned
In this section, we analyze the performance of our approach by
studying what are learned by the neural network. Our protocol is
to assess whether important distributions about objects and object
pairs in the training data are learned by the network, i.e., if the
generated scenes have a distribution similar to the training data.

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 10 of 1–21.



Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:11

Fig. 9. Visual comparisons between synthesized scenes. For each row, the
first scene is randomly selected from 1000 generated scenes and the second
and third scenes are the closest scenes to the first in 1000 generated scenes.
We use the same object shape and texture for better comparison.

Pairwise correlations of objects. We first evaluate whether impor-
tant pairwise distributions between objects are learned properly
by our generator. We plot the distributions of the relative location
between the second object and the first object. For simplicity, we
only plot the marginal distribution on the x-y plane (or the top
view), which captures most of the signals. Here the relative location
is evaluated with respect to the coordinate system, whose origin
is given by the point on the boundary of the bounding box, and
whose direction to the bounding box center aligns with the front
orientation. We plot the heat-map of the distributions. In this ex-
periment, we consider Desk/Chair, Bed/Nightstand, Bed/Television,
and Chair/Computer for Bedroom, and Sofa/Table, Table/Television,
Plant/Sofa, and Sofa/Television for Living Room. If there aremultiple
pairs on one scene, we only extract the pairs with closest spatial
distance.

We collect statistics from 7000 training scenes for bedroom, 6000
training scenes for living room, and from 5000 randomly generated
scenes for each room type.
As illustrated in Figure 12 and 13, our generator nicely matches

the distributions in the training data. With convolution layers and
fully connected layers, the generator does not learn the pairwise
pattern. An intuition is that the sparse layers explicitly force the
network to learn features between grouped features of different
objects, which helps to identify low-order interactions among the
current feature representations, e.g., spatial correlations, while the
dense layers or convolution layers only aggregate detected patterns
globally. With the scene discriminator, the generator is able to
learn better pairwise pattern between Chair/Computer for Bedroom
and Plant/Sofa for Living Room compared to the generator trained

Fig. 10. User study on generated scenes using our approach and two baseline
approaches on the Bedroom and Living Room datasets. Blue bar indicates
the percentage of Real/Synthetic pairs that are marked as Real/Synthetic,
where users obtain correct answers. Likewise, Orange bar indicates the
percentage of Real/Synthetic pairs that are marked as Synthetic/Real, where
users obtain wrong answers. For blue bar, the higher the better. For orange
bar, the lower the better.

without it. With the image discriminator, some pairwise pattern
between objects has been smoothed and moved closer to the pair-
wise distribution in the training data, such as Bed/Night in Bedroom
and Plant/Sofa in Living Room. In particular, for Desk/Chair and
Bed/Nightstand, the learned distribution and the original distribu-
tion are very similar to each other. In other words, our approach
learns better pairwise relations in the training data.

Figure 14 and Figure 15 show the distribution of the relative angles
between the front orientations. We have quantized the generated
angles, range from 0 to 2π , into 4 bins. The bottom of the circle
corresponds to the case where the two object shares the same
orientation. With convolution layers and fully connected layers, the
generator again does not learn the pairwise pattern, and compared
to other baseline approaches, our method learns such distributions
slightly better.

2020-12-04 17:41. Page 11 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.



1:12 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

Bedroom.

Desk-Chair Bed-Night. Bed-TV Chair-
Computer

Training

No-
align

Ours

Livingroom.
Sofa-Table Table-TV Plant-Sofa Sofa-TV

Training

No-
align

Ours

Fig. 11. Distributions of relative positions between selected object pairs.
The origin lies in the image center. Top three rows: Distributions of selected
pairs of classes in Bedroom for training data, synthesized scenes with no
global scene alignment, and our synthesized scenes respectively (from left
to right: Desk/Chair, Bed/Nightstand, Bed/Television, and Chair/Computer).
Bottom three rows: Distributions of selected pairs of classes in Living Room
for training data, synthesized scenes with no global scene alignment, and
our synthesized scenes (from left to right: Sofa/Table, Table/Television,
Plant/Sofa, and Sofa/Television).

5.5 The Importance of Joint Scene Alignment
In this section, we perform an additional study to justify that jointly
optimizing 3D scenes as a preprocessing step is important. As an
evaluation metric, we use the distribution between selected pairs of
objects between the Chair class and Table class and the Bed class
and the NightStand class locations and orientation on the Bedroom
dataset.

Global scene alignment. As illustrated in Figure 11, deactivat-
ing the global scene alignment step (i.e., applying our alternating
minimization procedure on the raw input data directly) causes
the network to not learn correlations between salient patterns.
The distributions of absolute locations on generated scenes are
significantly different from that on the training data. This justifies
that global scene alignment is crucial to the success of our system.

Bedroom.

Desk-Chair Bed-Night. Bed-TV Chair-
Computer

Training

Baseline
I

Baseline
II

Baseline
III

Baseline
IV

Ours

Fig. 12. Distributions of relative positions between selected object pairs.
The origin lies in the image center. The position of the first object is in the
center. The origin is at the center of the figure; the x-axis goes left; the y-axis
goes up. Top to bottom: distributions of selected pairs of classes in Bedroom
for training data, synthesized scenes with Baseline I, Baseline II, Baseline
III, Baseline IV, and our synthesized scenes respectively (from left to right:
Desk/Chair, Bed/Nightstand, Bed/Television, and Chair/Computer).

In other words, it is insufficient for local formulation to align the
input scenes.
We have also evaluated whether our approach learns important

distributions of the absolute locations of the objects in Appendix A.

5.6 Applications in Scene Interpolation
In this section, we show the application of our approach in scene
interpolation. Given two input scenes, we first compute their as-
sociated latent parameters. We then interpolate these two latent
parameters along the straight line between the two parameters
and use the generator to generate the corresponding synthetic
scenes. Figure 16 shows four examples. The first two examples
are interpolations of bedroom scenes, and the second two are from
living room scenes. For bedroom scenes, the first example consists of
two scenes with very different configurations, where the orientation
of two rooms are not aligned. The intermediate scenes gradually
remove the original bed, table and desk, and then add the bed with
new location and orientation, which is semantically meaningful.
The second example consists of two similar bedroom scenes with

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 12 of 1–21.



Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:13

Livingroom.
Sofa-Table Table-TV Plant-Sofa Sofa-TV

Training

Baseline
I

Baseline
II

Baseline
III

Baseline
IV

Ours

Fig. 13. Distributions of relative positions between selected object pairs.
The origin lies in the image center. The position of the first object is in the
center. The origin is at the center of the figure; the x-axis goes left; the
y-axis goes up. Top to bottom: distributions of selected pairs of classes in
Living Room for training data, synthesized scenes with Baseline I, Baseline
II, Baseline III, Baseline IV, and our synthesized scenes (from left to right:
Sofa/Table, Table/Television, Plant/Sofa, and Sofa/Television).

different objects. In intermediate scenes, bed, night stands and table
lamps stay the same, while wardrobes are gradually removed and
the a table and a laptop are added gradually. These are meaningful
interpolations. For living room scenes, the first example consists of
two scenes with similar configuration of objects but the locations
of the chairs are reversed with respect to the sofa object. The
intermediate scenes gradually remove objects on one side and then
add objects on the other side, leading to a meaningful interpolation.
The second example shows a configuration where the source scene
has different objects than the target scene. The intermediate scenes
progressively delete objects and then add new objects in different
category, which is again semantically meaningful.

5.7 Applications in Scene Completion
We then show the application of our approach on the application
of scene completion. In this task, we are given a partial scene, and
our task is to find the optimal scene that completes the input scene.
Towards this end, we solve the following optimization problem:

z⋆ = argmin
z,T,S

∥TS(Min ) −C .Gθ (z)∥
2
F + α ∥z∥

2 (10)

Bedroom.

Desk-Chair Bed-Night. Bed-TV. Chair-
Computer.

Training

Baseline
I

Baseline
II

Baseline
III

Baseline
IV

Ours

Fig. 14. Distributions of relative orientations between selected object pairs.
The bottom of the circle represents the case where the two objects share the
same orientation, the left or right represents the case where the two objects
are orthogonal to each other, and the top represents the case where the two
objects are facing opposite directions. In other words, the bottom of the circle
shows zero difference, and the difference of orientations increases counter-
clockwise, where the difference at the right of the circle is 90, the difference
at the top of the circle is 180, etc. Yellow means high density while blue
means low density. Top to bottom: distributions of selected pairs of classes
in Bedroom for training data, synthesized scenes with Baseline I, Baseline II,
Baseline III, Baseline IV, and our synthesized scenes respectively (from left
to right: Desk/Chair, Bed/Nightstand, Bed/Television, and Chair/Computer).

whereC is the mask associated withMin , and it constraints that the
completed scene should contain objects in the input partial scene. .
is the elementwise matrix product. Again we apply gradient descent
for optimization. We set α = 1e − 3 in our experiments. Intuitively,
our approach seeks to find among all plausible scenes that match
the partial observations, the one that is the most popular, e.g., close
to the origin.
As a comparison, we compare the synthesis results of [Fisher

et al. 2012], [Kermani et al. 2016] and [Wang et al. 2018a]. Since
all approaches used different datasets, as for a fair comparison, we
re-implemented their approaches on our Bedroom and Living Room
datasets.

Figure 17 compares our approach with baseline approaches. The
input partial scenes are cropped from scenes in the testing datasets.
Since all baseline approaches generate a series of completed scenes,

2020-12-04 17:41. Page 13 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.



1:14 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

Livingroom.
Sofa-Table Table-TV Plant-Sofa Sofa-TV

Training

Baseline
I

Baseline
II

Baseline
III

Baseline
IV

Ours

Fig. 15. Distributions of relative orientations between selected object pairs.
The bottom of the circle represents the case where the two objects share
the same orientation, the left or right represents the case where the two
objects are orthogonal to each other, and the top represents the case where
the two objects are facing opposite directions. In other words, the bottom of
the circle shows zero difference, and the difference of orientations increases
counter-clockwise, where the difference at the right of the circle is 90, the
difference at the top of the circle is 180, etc. Yellow means high density while
blue means low density. Top to bottom: distributions of selected pairs of
classes in Living Room for training data, synthesized scenes with Baseline I,
Baseline II, Baseline III, Baseline IV, and our synthesized scenes (from left
to right: Sofa/Table, Table/Television, Plant/Sofa, and Sofa/Television).

for a fair comparison we choose the ones that have the same or
similar number of objects as the output of our approach. We can see
that our approach leads to semantically more meaningful results in
terms of both groups of co-related objects and locally compatible of
object pairs. We can understand this as the fact that our approach
optimizes the scene layout with respect to all patterns captured
by the neural network. In contrast, other baseline approaches are
sequential, despite the usage of local optimization [Yu et al. 2011]
to improve scene layouts, they may not be able to explore the entire
underlying scene space for generating the completed scenes.
Moreover, our approach is significantly faster than the baseline

approaches. Our approach takes 1-2 seconds for solving (10) , while
[Fisher et al. 2012], [Kermani et al. 2016] and [Wang et al. 2018a] take
83.1 seconds, 76.4 seconds and 10 minutes in average, respectively.
In particular, most of the computational time was spent on running
local optimization to improve the scene layouts.

6 CONCLUSIONS
We have studied the problem of 3D scene synthesis using deep gen-
erative models. Unlike 2D images, 3D geometries possess multiple
varying representations, each with its advantages and disadvantages
for themost efficacious deep neural networks. Tomaximize tradeoffs,
we therefore presented a hybrid methodology that trains a 3D
scene generator using a combination of a 3D object arrangement
representation, and a projected 2D image representation, combining
the advantages of both representations. The 3D object arrangement
representation ensures local and global neighborhood structure of
the synthesized scene, while image-based representations preserve
local view-dependent patterns. Moreover the results obtained from
the image-based representation is beneficial for training the 3D
generator.
Our 3D scene generator is a feed-forward neural network. This

network design takes another route from the common recurrent
methodology for 3D scene synthesis and modeling. The benefit of
the feed-forward architecture is that it can jointly optimize all the
factors for 3D synthesis, while it is difficult for a recurrent approach
to recover from mistakes made during its sequential processing.
Preliminary qualitative evaluations have shown the advantage of
the feed-forward architecture over two recurrent approaches. Al-
though it is premature to say that feed-forward approaches shall
significantly dominate recurrent approaches, we do believe that free-
forward networks have shown great promise in several scenarios,
and deserves further research and exploitation.
One limitation of our approach is that we do not completely

encode physical properties of the synthesized scenes, which are
important for computer aided manufacturing purposes (e.g., 3D
printing). To address this issue, one possibility is to develop a suitable
3D representation that explicitly encodes physical properties, e.g.,
using a shape grammar.
Another limitation of our approach is that all the training data

should consist of semantically segmented 3D scenes. This may not
always be possible, e.g., reconstructed 3D scenes from point clouds
are typically not segmented into individual objects. A potential way
to address this issue is to extend the consistent hybrid represen-
tation described in this paper, e.g., by enforcing the consistency
among three networks: 1) scene synthesis under the image-based
representation, 2) scene synthesis under the 3D object arrangement
representation and 3) a network that converts a 3D scene into its
corresponding 3D object arrangement representation.
Besides, our approach restricts the number of synthesized in-

stances in generated scenes. This strategy may raise issues for object
arrangements in large scenes. A potential solution is to extend our
model so that it can synthesize new object arrangements for an
existing scene layout. For large scenes, we can feed the generated
scenes back to acquire more synthesized object arrangements. We
leave this as future research.

Our approach uses shape descriptors to query appropriate shapes
in the database to determine the shapes of the objects in each
synthesized scene. A limitation of this approach is that at the object
level, we do not create new shapes. In the future, we plan to address
this issue by learning a shape generator for each category and

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 14 of 1–21.



Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:15

Fig. 16. Scene interpolation results between different pairs of source (left column) and target (right column) scenes.

Fig. 17. Scene completion results. From top to bottom, we show the input objects, completed scenes generated by our method, and the results using [Fisher
et al. 2012], [Kermani et al. 2016] and [Wang et al. 2018a], respectively.

2020-12-04 17:41. Page 15 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.



1:16 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

modifying our scene generator to synthesize the latent parameter
associated with each scene object.
There are multiple other directions and opportunities for future

research. As mentioned in the introduction, there are at least five
frequently used 3D representations. One could extend our current
approach to use more than one 3D representation. For example,
we could leverage multi-view representations on which we have
rich training data (e.g., internet images). The multi-view representa-
tion also provides texture information, useful for synthesizing 3D
representations. Finally, we would propose to combine the learned
3D representation with data from other modalities such as natural
language descriptions.
Acknowledgement. The authors would like thank Chandrajit Ba-
jaj for many fruitful discussions. Qixing Huang would like to ac-
knowledge support of this research from NSF DMS-1700234, a Gift
from Snap Research, and a hardware Donation from NVIDIA.

REFERENCES
Brett Allen, Brian Curless, and Zoran Popović. 2003. The Space of Human Body Shapes:

Reconstruction and Parameterization from Range Scans. ACM Trans. Graph. 22, 3
(July 2003), 587–594. https://doi.org/10.1145/882262.882311

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,
and James Davis. 2005. SCAPE: Shape Completion and Animation of People. ACM
Trans. Graph. 24, 3 (July 2005), 408–416. https://doi.org/10.1145/1073204.1073207

Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative
Adversarial Networks. In ICML (Proceedings of Machine Learning Research), Vol. 70.
PMLR, Sydney, Australia, 214–223.

Volker Blanz and Thomas Vetter. 1999. AMorphable Model for the Synthesis of 3D Faces.
In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 187–194. https://doi.org/10.1145/311535.311556

Zhangjie Cao, Qixing Huang, and Karthik Ramani. 2017. 3D Object Classification via
Spherical Projections. In 3DV. IEEE Computer Society, Qingdao, Shandong, China,
566–574.

Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3DModel Repository.
CoRR abs/1512.03012 (2015). http://arxiv.org/abs/1512.03012

Avishek Chatterjee and Venu Madhav Govindu. 2013. Efficient and Robust Large-Scale
Rotation Averaging. In ICCV. IEEE Computer Society, Sydney, Australia, 521–528.

Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, and Thomas
Funkhouser. 2013. Attribit: Content Creation with Semantic Attributes. In
Proceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology (UIST ’13). ACM, New York, NY, USA, 193–202. https://doi.org/10.1145/
2501988.2502008

Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun.
2011. Probabilistic Reasoning for Assembly-based 3D Modeling. ACM Trans. Graph.
30, 4, Article 35 (July 2011), 10 pages.

Siddhartha Chaudhuri and Vladlen Koltun. 2010. Data-driven Suggestions for Creativity
Support in 3D Modeling. ACM Trans. Graph. 29, 6, Article 183 (Dec. 2010), 10 pages.
https://doi.org/10.1145/1882261.1866205

Kang Chen, Yu-Kun Lai, Yu-Xin Wu, Ralph Martin, and Shi-Min Hu. 2014. Automatic
Semantic Modeling of Indoor Scenes from Low-quality RGB-D Data Using Con-
textual Information. ACM Trans. Graph. 33, 6, Article 208 (Nov. 2014), 12 pages.
https://doi.org/10.1145/2661229.2661239

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. 2018. Spherical CNNs.
CoRR abs/1801.10130 (2018).

Ingrid Daubechies, Ronald Devore, Massimo Fornasier, and C. Sinan GÃĳntÃĳrk. 2010.
Iteratively reweighted least squares minimization for sparse recovery. Comm. Pure
Appl. Math 63 (January 2010), 1–38. Issue 1.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. ImageNet: A
large-scale hierarchical image database. In CVPR. IEEE Computer Society, 248–255.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis.
2017. 3D object classification and retrieval with Spherical CNNs. CoRR
abs/1711.06721 (2017).

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. 2017. A Point Set Generation Network
for 3D Object Reconstruction from a Single Image. In CVPR. IEEE Computer Society,
Honolulu, Hawaii,USA, 2463–2471.

Matthew Fisher and Pat Hanrahan. 2010. Context-based Search for 3D Models. ACM
Trans. Graph. 29, 6, Article 182 (Dec. 2010), 10 pages. https://doi.org/10.1145/

1882261.1866204
Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan.

2012. Example-based Synthesis of 3D Object Arrangements. ACM Trans. Graph. 31,
6, Article 135 (Nov. 2012), 11 pages.

Matthew Fisher, Manolis Savva, and Pat Hanrahan. 2011. Characterizing Structural
Relationships in Scenes Using Graph Kernels. ACM Trans. Graph. 30, 4, Article 34
(July 2011), 12 pages. https://doi.org/10.1145/2010324.1964929

Matthew Fisher, Manolis Savva, Yangyan Li, Pat Hanrahan, and Matthias Niessner. 2015.
Activity-centric Scene Synthesis for Functional 3D Scene Modeling. ACM Trans.
Graph. 34, 6, Article 179 (Oct. 2015), 13 pages. https://doi.org/10.1145/2816795.
2818057

Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer,
Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by Example.
ACM Trans. Graph. 23, 3 (Aug. 2004), 652–663. https://doi.org/10.1145/1015706.
1015775

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

David Ha and Douglas Eck. 2017. A Neural Representation of Sketch Drawings. CoRR
abs/1704.03477 (2017).

Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.
CoRR abs/1510.00149 (2015).

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Shijian Tang, Erich Elsen, Bryan
Catanzaro, John Tran, and William J. Dally. 2016. DSD: Regularizing Deep Neural
Networks with Dense-Sparse-Dense Training Flow. CoRR abs/1607.04381 (2016).

Christian Häne, Shubham Tulsiani, and Jitendra Malik. 2017. Hierarchical Surface
Prediction for 3D Object Reconstruction. CoRR abs/1704.00710 (2017).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society,
770–778.

Kyle Heath, Natasha Gelfand, Maks Ovsjanikov, Mridul Aanjaneya, and Leonidas J.
Guibas. 2010. Image webs: Computing and exploiting connectivity in image
collections.. In CVPR. IEEE Computer Society, 3432–3439. http://dblp.uni-trier.
de/db/conf/cvpr/cvpr2010.html#HeathGOAG10

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks on
Graph-Structured Data. CoRR abs/1506.05163 (2015).

Berthold K. P. Horn. 1987. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A 4, 4 (1987), 629–642.

Qixing Huang, Hai Wang, and Vladlen Koltun. 2015. Single-view Reconstruction via
Joint Analysis of Image and Shape Collections. ACM Trans. Graph. 34, 4, Article 87
(July 2015), 10 pages.

Qi-Xing Huang, Simon Flöry, Natasha Gelfand, Michael Hofer, and Helmut Pottmann.
2006. Reassembling Fractured Objects by Geometric Matching. ACM Trans. Graph.
25, 3 (July 2006), 569–578. https://doi.org/10.1145/1141911.1141925

Qi-Xing Huang and Leonidas Guibas. 2013. Consistent Shape Maps via Semidefinite
Programming. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Sym-
posium on Geometry Processing (SGP ’13). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 177–186. https://doi.org/10.1111/cgf.12184

Xiangru Huang, Zhenxiao Liang, Chandrajit Bajaj, and Qixing Huang. 2017. Translation
Synchronization via Truncated Least Squares. In Advances in Neural Information Pro-
cessing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (Eds.). Curran Associates, Inc., 1459–1468. http://papers.
nips.cc/paper/6744-translation-synchronization-via-truncated-least-squares.pdf

Daniel Huber. 2002. Automatic Three-dimensional Modeling from Reality. Ph.D.
Dissertation. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Hamid Izadinia, Qi Shan, and Steven M. Seitz. 2016. IM2CAD. CoRR abs/1608.05137
(2016).

Yun Jiang, Marcus Lim, and Ashutosh Saxena. 2012. Learning Object Arrangements in
3D Scenes using Human Context. In ICML. icml.cc / Omnipress.

Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun. 2012.
A Probabilistic Model for Component-based Shape Synthesis. ACM Trans. Graph.
31, 4, Article 55 (July 2012), 11 pages. https://doi.org/10.1145/2185520.2185551

Z. Sadeghipour Kermani, Z. Liao, P. Tan, and H. Zhang. 2016. Learning 3D Scene
Synthesis from Annotated RGB-D Images. Comput. Graph. Forum 35, 5 (Aug. 2016),
197–206. https://doi.org/10.1111/cgf.12976

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Stephen DiVerdi, and Thomas Funkhouser.
2012. Exploring Collections of 3D Models Using Fuzzy Correspondences. ACM
Trans. Graph. 31, 4, Article 54 (July 2012), 11 pages. https://doi.org/10.1145/2185520.
2185550

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980 (2014). http://dblp.uni-trier.de/db/journals/corr/corr1412.html#
KingmaB14

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 16 of 1–21.

https://doi.org/10.1145/882262.882311
https://doi.org/10.1145/1073204.1073207
https://doi.org/10.1145/311535.311556
http://arxiv.org/abs/1512.03012
https://doi.org/10.1145/2501988.2502008
https://doi.org/10.1145/2501988.2502008
https://doi.org/10.1145/1882261.1866205
https://doi.org/10.1145/2661229.2661239
https://doi.org/10.1145/1882261.1866204
https://doi.org/10.1145/1882261.1866204
https://doi.org/10.1145/2010324.1964929
https://doi.org/10.1145/2816795.2818057
https://doi.org/10.1145/2816795.2818057
https://doi.org/10.1145/1015706.1015775
https://doi.org/10.1145/1015706.1015775
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#HeathGOAG10
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#HeathGOAG10
https://doi.org/10.1145/1141911.1141925
https://doi.org/10.1111/cgf.12184
http://papers.nips.cc/paper/6744-translation-synchronization-via-truncated-least-squares.pdf
http://papers.nips.cc/paper/6744-translation-synchronization-via-truncated-least-squares.pdf
https://doi.org/10.1145/2185520.2185551
https://doi.org/10.1111/cgf.12976
https://doi.org/10.1145/2185520.2185550
https://doi.org/10.1145/2185520.2185550
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14


Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:17

Diederik P. Kingma, Tim Salimans, and Max Welling. 2016. Improving Variational
Inference with Inverse Autoregressive Flow. CoRR abs/1606.04934 (2016). http:
//arxiv.org/abs/1606.04934

Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. CoRR
abs/1312.6114 (2013). http://arxiv.org/abs/1312.6114

Roman Klokov and Victor S. Lempitsky. 2017. Escape from Cells: Deep Kd-Networks
for The Recognition of 3D Point Cloud Models. CoRR abs/1704.01222 (2017).

Vladislav Kreavoy, Dan Julius, and Alla Sheffer. 2007. Model Composition from
Interchangeable Components. In Proceedings of the 15th Pacific Conference on
Computer Graphics and Applications (PG ’07). IEEE Computer Society, Washington,
DC, USA, 129–138. https://doi.org/10.1109/PG.2007.43

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther.
2016. Autoencoding Beyond Pixels Using a Learned Similarity Metric. In Proceedings
of the 33rd International Conference on International Conference on Machine Learning
- Volume 48 (ICML’16). JMLR.org, 1558–1566. http://dl.acm.org/citation.cfm?id=
3045390.3045555

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas.
2017. GRASS: Generative Recursive Autoencoders for Shape Structures. ACM
Trans. Graph. 36, 4, Article 52 (July 2017), 14 pages. https://doi.org/10.1145/3072959.
3073637

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir,
Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. 2019. Grains:
Generative recursive autoencoders for indoor scenes. ACM Transactions on Graphics
(TOG) 38, 2 (2019), 12.

Tianqiang Liu, Siddhartha Chaudhuri, Vladimir G. Kim, Qixing Huang, Niloy J.
Mitra, and Thomas Funkhouser. 2014. Creating Consistent Scene Graphs Using a
Probabilistic Grammar. ACM Trans. Graph. 33, 6, Article 211 (Nov. 2014), 12 pages.
https://doi.org/10.1145/2661229.2661243

Rui Ma, Honghua Li, Changqing Zou, Zicheng Liao, Xin Tong, and Hao Zhang. 2016.
Action-driven 3D Indoor Scene Evolution. ACM Trans. Graph. 35, 6, Article 173
(Nov. 2016), 13 pages. https://doi.org/10.1145/2980179.2980223

Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, Sören Pirk, Binh-Son Hua, Sai-Kit
Yeung, Xin Tong, Leonidas Guibas, and Hao Zhang. 2018. Language-driven synthesis
of 3D scenes from scene databases. In SIGGRAPH Asia 2018 Technical Papers. ACM,
212.

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst.
2015. Geodesic Convolutional Neural Networks on Riemannian Manifolds. In
Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop
(ICCVW) (ICCVW ’15). IEEE Computer Society, Washington, DC, USA, 832–840.
https://doi.org/10.1109/ICCVW.2015.112

Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010. Computer-generated Residential
Building Layouts. ACM Trans. Graph. 29, 6, Article 181 (Dec. 2010), 12 pages.
https://doi.org/10.1145/1882261.1866203

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and
Michael M. Bronstein. 2017. Geometric Deep Learning on Graphs and Manifolds
Using Mixture Model CNNs. In CVPR. IEEE Computer Society, 5425–5434.

C. Nash and C. K. I. Williams. 2017. The Shape Variational Autoencoder: A Deep
Generative Model of Part-segmented 3D Objects. Comput. Graph. Forum 36, 5 (Aug.
2017), 1–12. https://doi.org/10.1111/cgf.13240

Planner5d. 2017. Home Design Software and Interior Design Tool ONLINE for home
and floor plans in 2D and 3D. https://planner5d.com

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya
Ganguli. 2016. Exponential expressivity in deep neural networks through
transient chaos. In Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett
(Eds.). Curran Associates, Inc., 3360–3368. http://papers.nips.cc/paper/
6322-exponential-expressivity-in-deep-neural-networks-through-transient-chaos.
pdf

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. PointNet:
Deep Learning on Point Sets for 3D Classification and Segmentation. In CVPR. IEEE
Computer Society, 77–85.

Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and
Leonidas J. Guibas. 2016. Volumetric and Multi-view CNNs for Object Classification
on 3D Data. In CVPR. IEEE Computer Society, 5648–5656.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. 2018.
Human-centric Indoor Scene Synthesis Using Stochastic Grammar. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer
Society, Salt Lake City, UT, USA, 5899–5908.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks. CoRR
abs/1511.06434 (2015).

Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas Geiger. 2017. OctNetFu-
sion: Learning Depth Fusion from Data. CoRR abs/1704.01047 (2017).

Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah D. Goodman. 2016. Neurally-
guided Procedural Models: Amortized Inference for Procedural Graphics Programs
Using Neural Networks. In Proceedings of the 30th International Conference on Neural

Information Processing Systems (NIPS’16). Curran Associates Inc., USA, 622–630.
http://dl.acm.org/citation.cfm?id=3157096.3157166

Daniel Ritchie, Kai Wang, and Yu-an Lin. 2019. Fast and flexible indoor scene synthesis
via deep convolutional generative models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 6182–6190.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. 2016. Improved Techniques for Training GANs. CoRR abs/1606.03498
(2016).

Manolis Savva, Angel X. Chang, Pat Hanrahan, Matthew Fisher, and Matthias Niessner.
2016. PiGraphs: Learning Interaction Snapshots from Observations. ACM Trans.
Graph. 35, 4, Article 139 (July 2016), 12 pages. https://doi.org/10.1145/2897824.
2925867

Tianjia Shao, Weiwei Xu, Kun Zhou, Jingdong Wang, Dongping Li, and Baining Guo.
2012. An interactive approach to semantic modeling of indoor scenes with an RGBD
camera. ACM Transactions on Graphics (TOG) 31, 6 (2012), 136.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.
2017. CSGNet: Neural Shape Parser for Constructive Solid Geometry. CoRR
abs/1712.08290 (2017).

Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. 2012. Structure Recovery by
Part Assembly. ACM Trans. Graph. 31, 6, Article 180 (Nov. 2012), 11 pages.

Yanyao Shen, Qixing Huang, Nati Srebro, and Sujay Sanghavi. 2016. Normalized
Spectral Map Synchronization. In Advances in Neural Information Processing
Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett (Eds.). Curran Associates, Inc., 4925–4933. http://papers.nips.cc/paper/
6128-normalized-spectral-map-synchronization.pdf

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and
Russell Webb. 2016. Learning from Simulated and Unsupervised Images through
Adversarial Training. CoRR abs/1612.07828 (2016). arXiv:1612.07828 http://arxiv.
org/abs/1612.07828

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. 2017. Semantic Scene Completion from a Single Depth Image.
Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition
(2017).

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-
view Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of
the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV ’15). IEEE
Computer Society, Washington, DC, USA, 945–953. https://doi.org/10.1109/ICCV.
2015.114

Minhyuk Sung, Hao Su, Vladimir G. Kim, Siddhartha Chaudhuri, and Leonidas Guibas.
2017. Complementme: Weakly-supervised Component Suggestions for 3DModeling.
ACM Trans. Graph. 36, 6, Article 226 (Nov. 2017), 12 pages. https://doi.org/10.1145/
3130800.3130821

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2016. Multi-view 3D
Models from Single Images with a Convolutional Network. In ECCV (7) (Lecture
Notes in Computer Science), Vol. 9911. Springer, 322–337.

Olivier Teboul. 2011. Shape grammar parsing : application to image-based modeling. Ph.D.
Dissertation. Ecole Centrale Paris. https://tel.archives-ouvertes.fr/tel-00628906

Shubham Tulsiani, Saurabh Gupta, David F. Fouhey, Alexei A. Efros, and Jitendra Malik.
2017a. Factoring Shape, Pose, and Layout from the 2D Image of a 3D Scene. CoRR
abs/1712.01812 (2017).

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik.
2017b. Learning Shape Abstractions by Assembling Volumetric Primitives. In CVPR.
IEEE Computer Society, 1466–1474.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016. Pixel Recurrent
Neural Networks. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48 (ICML’16). JMLR.org, New York, NY,
USA, 1747–1756. http://dl.acm.org/citation.cfm?id=3045390.3045575

Hao Wang, Nadav Schor, Ruizhen Hu, Haibin Huang, Daniel Cohen-Or, and Hui Huang.
2018b. Global-to-local generative model for 3d shapes. In SIGGRAPH Asia 2018
Technical Papers. ACM, 214.

Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X Chang, and Daniel
Ritchie. 2019. PlanIT: planning and instantiating indoor scenes with relation graph
and spatial prior networks. ACM Transactions on Graphics (TOG) 38, 4 (2019), 132.

Kai Wang, Manolis Savva, Angel X Chang, and Daniel Ritchie. 2018a. Deep
convolutional priors for indoor scene synthesis. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 70.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-CNN:
Octree-based Convolutional Neural Networks for 3D Shape Analysis. ACM Trans.
Graph. 36, 4, Article 72 (2017), 11 pages.

Jason Weber and Joseph Penn. 1995. Creation and Rendering of Realistic Trees. In
Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’95). ACM, New York, NY, USA, 119–128. https://doi.org/10.
1145/218380.218427

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B.
Tenenbaum. 2016. Learning a Probabilistic Latent Space of Object Shapes via 3D
Generative-adversarial Modeling. In Proceedings of the 30th International Conference

2020-12-04 17:41. Page 17 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.

http://arxiv.org/abs/1606.04934
http://arxiv.org/abs/1606.04934
http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/PG.2007.43
http://dl.acm.org/citation.cfm?id=3045390.3045555
http://dl.acm.org/citation.cfm?id=3045390.3045555
https://doi.org/10.1145/3072959.3073637
https://doi.org/10.1145/3072959.3073637
https://doi.org/10.1145/2661229.2661243
https://doi.org/10.1145/2980179.2980223
https://doi.org/10.1109/ICCVW.2015.112
https://doi.org/10.1145/1882261.1866203
https://doi.org/10.1111/cgf.13240
https://planner5d.com
http://papers.nips.cc/paper/6322-exponential-expressivity-in-deep-neural-networks-through-transient-chaos.pdf
http://papers.nips.cc/paper/6322-exponential-expressivity-in-deep-neural-networks-through-transient-chaos.pdf
http://papers.nips.cc/paper/6322-exponential-expressivity-in-deep-neural-networks-through-transient-chaos.pdf
http://dl.acm.org/citation.cfm?id=3157096.3157166
https://doi.org/10.1145/2897824.2925867
https://doi.org/10.1145/2897824.2925867
http://papers.nips.cc/paper/6128-normalized-spectral-map-synchronization.pdf
http://papers.nips.cc/paper/6128-normalized-spectral-map-synchronization.pdf
http://arxiv.org/abs/1612.07828
http://arxiv.org/abs/1612.07828
http://arxiv.org/abs/1612.07828
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1145/3130800.3130821
https://doi.org/10.1145/3130800.3130821
https://tel.archives-ouvertes.fr/tel-00628906
http://dl.acm.org/citation.cfm?id=3045390.3045575
https://doi.org/10.1145/218380.218427
https://doi.org/10.1145/218380.218427


1:18 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

on Neural Information Processing Systems (NIPS’16). Curran Associates Inc., USA,
82–90. http://dl.acm.org/citation.cfm?id=3157096.3157106

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric
shapes.. In CVPR. IEEE Computer Society, 1912–1920. http://dblp.uni-trier.de/db/
conf/cvpr/cvpr2015.html#WuSKYZTX15

Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013. Sketch2Scene:
Sketch-based Co-retrieval and Co-placement of 3D Models. ACM Transactions on
Graphics 32, 4 (2013), 123:1–123:12.

Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Fit and Diverse: Set
Evolution for Inspiring 3D Shape Galleries. ACM Trans. Graph. 31, 4, Article 57 (July
2012), 10 pages.

Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. 2016. SyncSpecCNN: Synchronized
Spectral CNN for 3D Shape Segmentation. CoRR abs/1612.00606 (2016).

Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan,
and Stanley J. Osher. 2011. Make It Home: Automatic Optimization of Furniture
Arrangement. ACM Trans. Graph. 30, 4, Article 86 (July 2011), 12 pages. https:
//doi.org/10.1145/2010324.1964981

Junbo Jake Zhao, Michaël Mathieu, and Yann LeCun. 2016. Energy-based Generative
Adversarial Network. CoRR abs/1609.03126 (2016). http://arxiv.org/abs/1609.03126

Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. 2018.
Scores: Shape composition with recursive substructure priors. In SIGGRAPH Asia
2018 Technical Papers. ACM, 211.

Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem. 2018. LayoutNet: Recon-
structing the 3D Room Layout From a Single RGB Image. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018. IEEE Computer Society, Salt Lake City, UT, USA, 2051–2059.
https://doi.org/10.1109/CVPR.2018.00219

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 2017. 3D-
PRNN: Generating Shape Primitives with Recurrent Neural Networks. In IEEE
International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017. IEEE Computer Society, Venice, Italy, 900–909. https://doi.org/10.1109/ICCV.
2017.103

A ADDITIONAL RESULTS AND LESSONS LEARNED
In this section, we show additional results and analysis.

Figure 20 shows the training loss convergence curve. Due to the
nature of adversarial training, the loss term is oscillating during
training. Thus, we do not include the adversarial loss for conver-
gence analysis. Based on Figure 20, the training procedure is stable
and converges smoothly. In addition, without optimizing the pair-
wise permutation and translation during training, the loss converges
slower.
Additional results have been shown in Figure 19 and Figure 21.

Absolute locations of objects. We evaluate whether our approach
learns important distributions of the absolute locations of the objects.
For this particular experiment, we picked 5000 training scenes with
rectangle shape for both bedroom and living room types, and used
it as the training instances for this experiment. With rectangle
room geometry, the absolution location distribution can be shown
with rectangle heatmap pictures, which serves better visualization
purpose. To this end, we have tested the distributions of absolute
locations of Nightstand, Bed, Window and Television for Bedroom,
and Door, Window, Rug and Plant for Living Room. For each object,
we calculate the distributions in the training data (with respect to
the aligned scenesMi ) versus 5000 randomly generated scenes.

For simplicity, we only plot the marginal distribution on the x-y
plane (or the top view), which captures most of the signals.

As illustrated in Figure 18, the distributions between synthesized
scenes of our approach and training scenes are fairly close. In
particular, on Window, the difference between the distributions
are not easy to identify. The two distributions are less similar on
Plant. An explanation is that there are fewer instances of Plant in

Bedroom.
Nightstand Bed Window Television

Training

No-
align

Ours

Livingroom.
Door Window Rug Plant

Training

No-
align

Ours

Fig. 18. Distributions of absolute locations of selected classes. Top three
rows: Distributions of selected object categories in Bedroom for training
data, synthesized scenes with no global scene alignment, and our syn-
thesized scenes respectively (from left to right: Nightstand, Bed, Window,
and Television). Bottom three rows: Distributions of selected classes in
Livingroom for training data, synthesized scenes with no global scene
alignment, and our synthesized scenes respectively (from left to right: Door,
Window, Rug, Plant.)

the training data than other categories, and thus the generalization
behavior performs less well.

B ADDITIONAL DETAILS ON PAIR-WISE SCENE
ALIGNMENT

In this section, we present our numerical optimization approach for
solving (5), which combines reweighted non-linear least squares and
alternating minimization. To this end, we first introduce a weight
vector w corresponding to the columns of T(S(Mi )) − Mj and
modify the optimization problem as

T in
i j ,S

in
i j = argmin

T,S
∥(T (S(Mi )) −Mj )diag(w)∥2F . (11)

RLSM alternates between fixingw to solve (11) and using the optimal
solution to update w. We set the initial weight vector as w(0) = 1.

Given the weight vector w(t ) at iteration t , we again perform al-
ternating minimization to optimize T and S. At each inner iteration

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 18 of 1–21.

http://dl.acm.org/citation.cfm?id=3157096.3157106
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#WuSKYZTX15
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#WuSKYZTX15
https://doi.org/10.1145/2010324.1964981
https://doi.org/10.1145/2010324.1964981
http://arxiv.org/abs/1609.03126
https://doi.org/10.1109/CVPR.2018.00219
https://doi.org/10.1109/ICCV.2017.103
https://doi.org/10.1109/ICCV.2017.103


Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:19

Fig. 19. Additional randomly generated scenes of bedrooms.

Fig. 20. Training loss without the adversarial loss versus # of iterations
for bedroom and living room. Bed without transformation shows the
convergence curve without optimizing pairwise permutation and translation
during training.

s , the updates are given by

T (t,s) = argmin
T

∥(T (S(t,s−1)(Mi )) −Mj )diag(w(t ))∥2F , (12)

S(t,s) = argmin
S

∥(T (t,s)(S(Mi )) −Mj )diag(w(t ))∥2F . (13)

In this case, both (12) and (13) admit closed-form solutions. The opti-
mal solution of (12) can be computed using [Horn 1987]. The optimal
solution of (13) can be computed by solving a linear assignment.
This alternate minimization procedure converges fairly fast, we

apply 4 iterations in our implementation.
Given the solution T (t ) and S(t ) from the alternating minimiza-

tion procedure described above, we update the weight vector at
iteration t + 1 as

w
(t+1)
k = ϵ/

√
ϵ2 + ∥(T (t )S(t )(Mi ) −Mj )ek ∥2, 1 ≤ k ≤ K ,

where ek is the k-th canonical basis of RK . ϵ = 10−3 is chosen to
be a small value. In our implementation, we apply 4 iterations of
reweighted least squares.

C GRADIENT OF THE IMAGE PROJECTION
Since P(M) is an image, and the pixel values are summation of
signed distance function values. In addition, the signed distance
function is with respect to a oriented box. Thus, it is sufficient to
derive the formula for computing the gradient of a point p with
respect to a line l parameterized by an orientation n and a point

2020-12-04 17:41. Page 19 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.



1:20 • Z. Zhang, Z. Yang, C. Ma, L. Luo, A. Huth, E. Vouga, and Q. Huang

Fig. 21. Additional randomly generated scenes of living rooms.

q = o + sn on l :

d(p, l) := (p − q)T n

= (p − o − sn)T n

= (p − o)T n − s . (14)

Here o represents the center of the box, n is the axis that is perpen-
dicular to the line, and s is the size along this axis.
It is easy to see that the derivative of d(p, l) with respect to o, n

and s are given by
∂d(p, l)
∂o

= −n,
∂d(p, l)
∂n

=
(
(p − o)T n⊥

)
· n⊥,

∂d(p, l)
∂s

= −1.
(15)

Here n⊥ is a vector that is perpendicular to n.
Some examples of topview projection on real scenes have been

shown in Figure 22.

D STATISTICS ON SUNCG
Table 1 and Table 2 collect statistics on Bedroom and Living Room,
respectively. Table 3 and Table 4 collect statistics of different room
shapes for Bedroom and Living Room, respectively.

Received February 2007; revised March 2009; final version June 2009; ac-
cepted July 2009

Fig. 22. Visual examples of top-down image projection.

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020. 2020-12-04 17:41. Page 20 of 1–21.



Deep Generative Modeling for Scene Synthesis via Hybrid Representations • 1:21

Name window bed wardrobe
Count 8156 7288 7134
Name stand door table lamp
Count 6921 6715 6375
Name television curtain rug
Count 5396 5111 4705
Name computer computer chandelier
Count 4687 4551 4372
Name desk picture frame shelving
Count 4246 3772 3674
Name dresser plant table
Count 3333 3168 2647
Name dressing table tv stand books
Count 2473 2433 2339
Name ottoman mirror air conditioner
Count 2256 2155 2153
Name floor lamp wall lamp sofa
Count 2050 1953 1651
Name vase hanger heater
Count 1642 1182 1104

Table 1. Names of classes and number of instances in each class of the
Bedroom dataset.

Name sofa window table
Count 9608 8217 7873
Name chair television plant
Count 5898 5680 5070
Name door chandelier rug
Count 4480 4129 3978
Name curtain tv stand picture frame
Count 3936 3778 3385
Name shelving floor lamp loudspeaker
Count 3082 3059 2599
Name vase ottoman computer
Count 2514 1871 1841
Name books fireplace air conditioner
Count 1773 1389 1341
Name wall lamp wardrobe clock
Count 1286 1255 1238
Name stereo set kitchen cabinet desk
Count 1204 1178 1159
Name heater fish tank playstation
Count 1016 936 906

Table 2. Names of classes and number of instances in each class of the
Living Room dataset.

Name 4 walls 5 walls 6 walls
Count 5270 283 1140
Name 7 walls 8 walls 9 walls
Count 110 135 21

Table 3. Number of instances for scenes with different number of walls in
the Bedroom dataset. Other room shapes appear fewer than 20 times.

Name 4 walls 5 walls 6 walls
Count 3992 387 995
Name 7 walls 8 walls 9 walls
Count 275 164 73
Name 10 walls 11 walls 12 walls
Count 58 21 19

Table 4. Number of instances for scenes with different number of walls in
the Living Room dataset. Other room shapes appear fewer than 10 times.

2020-12-04 17:41. Page 21 of 1–21. ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: July 2020.


	Abstract
	1 Introduction
	2 Related Works
	3 Overview
	3.1 Problem Statement
	3.2 Approach Overview

	4 Approach
	4.1 Scene Representation
	4.2 3D Object Arrangement Module
	4.3 Image-Based Module
	4.4 Joint Scene Alignment
	4.5 Network Training

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Perceptual Study
	5.4 What are Learned
	5.5 The Importance of Joint Scene Alignment
	5.6 Applications in Scene Interpolation
	5.7 Applications in Scene Completion

	6 Conclusions
	References
	A Additional results and lessons learned
	B Additional Details on Pair-wise Scene Alignment
	C Gradient of the Image Projection
	D Statistics on SUNCG

