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Abstract

We present HoliCity, a city-scale 3D dataset with rich
structural information. Currently, this dataset has 6,300
real-world panoramas of resolution 13312 × 6656 that are
accurately aligned with the CAD model of downtown Lon-
don with an area of more than 20 km2, in which the median
reprojection error of the alignment of an average image is
less than half a degree. This dataset aims to be an all-in-
one data platform for research of learning abstracted high-
level holistic 3D structures that can be derived from city
CAD models, e.g., corners, lines, wireframes, planes, and
cuboids, with the ultimate goal of supporting real-world ap-
plications including city-scale reconstruction, localization,
mapping, and augmented reality. The accurate alignment
of the 3D CAD models and panoramas also benefits low-
level 3D vision tasks such as surface normal estimation, as
the surface normal extracted from previous LiDAR-based
datasets is often noisy. We conduct experiments to demon-
strate the applications of HoliCity, such as predicting sur-
face segmentation, normal maps, depth maps, and vanishing
points, as well as test the generalizability of methods trained
onHoliCity and other related datasets. HoliCity is available
at https://holicity.io.

1. Introduction
In the past decades, we have witnessed an increasing

demand of 3D vision technologies. With the development
of robust point features such as SIFT [34] and ORB [41],
structure-from-motion (SfM) and simultaneous localization
and mapping (SLAM) have been successfully applied to
tasks such as autonomous driving, robotics, and augmented
reality. Leading 3D vision products, such as Hololens,
Magic Leap, Apple ARkit, Google AR navigation can local-
ize themselves and reconstruct the environment with point
clouds. Although the robustness of SfM has been greatly
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improved over the past decades, the resulting point clouds
are still noisy, incomplete, and thus can hardly be directly
used in real-world applications. Intricate post-processing
procedures, such as plane fitting [23], Poisson surface re-
construction [26], and TSDF fusion [13] are necessary for
downstream applications. Increasingly have people found
that these long pipelines of 3D reconstruction are difficult to
implement correctly and efficiently, and results in low-level
representations such as point clouds are also unfriendly for
parsing, editing, processing, and visualization.

Looking back at the origin of computer vision from the
’80s, researchers have found that our human beings do not
perceive the world with SIFT-like point features [12, 61, 38].
Instead, we abstract scenes with high-level geometry prim-
itives, such as corners, line segments, and planes, to form
our sense of 3D, navigate in cities, or interact with environ-
ments. This hints us that instead of point clouds, we can also
use high-level structures as a representation for 3D recon-
struction, which in many cases are more compact, intuitive,
and easy to process. In fact, early 3D vision research does
focus on reconstructing shapes with high-level abstractions,
such as lines/wireframes [17, 53, 6], contours/boundaries
[51, 29], planes/surfaces[3, 62], and cuboids/polyhedrons
[45, 35, 52, 59, 25, 53, 60, 2, 48]. We name these high-level
abstractions holistic structures in this paper, as they tend to
represent scenes globally, comparing to the SIFT-like local
features. However, recognition of holistic structures from
images seems too challenging to be practical at that time.
3D reconstruction with high-level abstractions does not get
enough attention despite its potentials, until recently.

Inspired by the recent success of deep convolutional neu-
ral networks (CNNs) in image classification, researchers
have proposed a variety of neural network-based approaches
to extract high-level holistic structures from images, such
as wireframes [73, 72], planes [31, 33], cuboids [40], van-
ishing points [71], room layouts [74], and building layouts
[70]. Most of them are supervised learning algorithms,
which means that they rely on datasets with annotated holis-
tic structures for training. However, making a properly an-
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(a) Bird’s-eye view of the HoliCity CAD model

Oxford RobotCar Dataset
(under same scale)

(b) Viewpoint coverage

(c) Panorama (d) RGB (e) Renderings (planes, depth, normal)

Figure 1: Our HoliCity dataset consists of accurate city-scale CAD models and spatially-registered street view panoramas.
HoliCity covers an area of more than 20 km2 in London from 6,300 viewpoints, which dwarfs previous datasets such as
Oxford RobotCar [37] (1b). From the CAD models (1a) and the panoramas (1c), it is possible to generate all kinds of clean
structured ground-truths for 3D scene understanding tasks, including perspective RGB images (1d), depth maps, plane maps,
and normal maps (1e).

notated outdoor 3D dataset for a particular high-level rep-
resentation is complex. The building process usually has
2 stages: (1) 3D data collection and (2) structure labeling.
Collecting 3D data such as depth images is a cost- and labor-
intensive process. This is especially true for outdoor scenes
due to the lack of dense depth sensors. Even with expensive
LiDAR systems, the point clouds from scans are still noisy
and have lower spatial resolution compared to RGB im-
ages. Derived features such as surface normal are unsmooth,
which might be the reason why previous normal estimation
research [16, 4, 58, 24] only demonstrates their results on
indoor scenes. These characteristics are unfavourable for ex-
tracting holistic structures. In addition, labeling high-level
abstractions on the collected 3D data is also challenging.
On one hand, manually annotating high-level structures is
time-consuming, as it requires researchers to design com-
plicated labeling software in 3D, train annotators to label
the data with a unified standard, and do the quality control.
On the other hand, the quality of automatically extracted
holistic structures from fitting algorithms such as J-Linkage
[54] might not be adequate. The results can be inaccurate,
incomplete, and erroneous, especially when the quality of
3D data is not that good and the supporting features of the
high-level structure are small. To make the problem worse,
frequently a dataset that is labeled for one particular struc-
ture cannot be easily reused for other structures. As a result,
data preparation has become one of the major road blockers

for structural 3D vision research.

To address the aforementioned challenges and provide
a high-quality multi-purpose dataset for the vision com-
munity, we develop HoliCity as a data platform for learn-
ing holistic 3D structures in urban environments. Figure 1
shows the illustration of HoliCity. HoliCity is composed of
6,300 high-resolution real-world panoramas that are accu-
rately aligned with the 3DCADmodel of downtown London
withmore than 20 km2 of area (see Figures 1a to 1c). Instead
of relying on expensive vehicle-mounted LiDAR scanners,
HoliCity takes the advantage of existing high-quality 3D
CAD city models from the GIS community. This way, we
can collect a large area of 3D data with fine details and
semantic labels at relatively low cost, in which the CAD
models are parametrized by corners, lines, and smooth sur-
faces so that it is friendly for researchers to extract holistic
structures. In comparison, traditional LiDAR-based datasets
such as KITTI [20] and RobotCar [37] cover a much smaller
area (see Figure 1b for visual comparison), are more expen-
sive to collect, and use noisy point clouds as their represen-
tation. Furthermore, the panorama photographs in HoliC-
ity are sharp, professional captured, and with resolution
as high as 13312 × 6656. In contrast, images of LiDAR-
based datasets are often from video recordings, so they can
be blurry, low-resolution, and repetitive. Application-wise,
traditional LiDAR-based datasets focus on tasks related to
low-level representations, such as depth map prediction, re-
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Figure 2: Images and generated 3D information from sampled viewpoints of HoliCity dataset. From top to bottom: perspective
images rendered from panoramas, surface segments overlaid with images, CADmodel renderings, and semantic segmentation.

construction with point clouds, and camera relocalization,
while HoliCity is designed for supporting the research of
3D reconstruction with high-level holistic structures, such
as junctions, lines, wireframes, planes, parameterized sur-
faces, and other geometry primitives that they can be derived
from CAD models, in addition to the traditional low-level
representations.

In summary, the main contributions of this work include:

1. we propose a novel pipeline for creating a city-scale 3D
dataset by utilizing existing CAD models and street-
view imagery at a relatively low cost;

2. we develop HoliCity as a data platform for learning
holistic 3D structures in urban environments;

3. we accurately align the panorama images with the CAD
models, in which the median reprojection error is less
than half a degree for an average image;

4. we conduct experiments to justify the necessity of
a CAD model-based data platform for 3D vision re-
search, including demonstrating potential applications
and testing its generalizability from/to other datasets.

2. Related Work

Synthetic 3D Datasets. Recently, object-level synthetic
datasets such as ShapeNet [10] are popular for computer vi-
sion research, as people are free to convert 3D CAD models
to any representations that their learning-based algorithms
like, such as depth maps [11], meshes [21], voxels [66],
point clouds [18], and signed distance fields [43]. With the
availability of CAD models, not only HoliCity shares sim-
ilar freedom as these synthetic object-level datasets, but it
also offers scene-level real-world images in urban environ-
ments. Additionally, synthetic approaches have also been
used to create structured 3D scenes, as seen in SceneNet
[39], SUNCG [50], SYNTHIA [47] and GTA5 [44] datasets.
They provide perfect labels for depth information and se-
mantic segmentation, and it is also possible to extract high-
level structural information from them. Nevertheless, their
images are still fake. In our experiments, we find that there
exists a large domain gap between the virtual renderings of
synthetic datasets and our real-world images.
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NYUv2 ScanNet Stanford-2D-3D SYNTHIA MegaDepth KITTI RobotCar HoliCity
type real real real synthetic real real real real
scene indoor indoor indoor driving landmark driving driving city
depth RGBD RGBD RGBD CAD SfM LIDAR LIDAR CAD
style dense dense © dense dense quasi quasi dense

normal © X X © © © © X
plane © X © X © © © X

coverage / 0.034 km2 0.006 km2 / / / / 20 km2

path length / / / / / 39.2 km 10 km /
time span 1 scan 1 scan 1 scan / unknown 5 scans 2014-2015 2008-2019
diversity 464 rooms 707 rooms 4 buildings / 200 scenes path path city

# of images 1.4k 2.5m 1.4k 50k 100k 93k 20m 6.3k
source image video video / image video video image
FoVs 71◦ × 60◦ 45◦ × 34◦ panorama 100◦ × 84◦ random 90◦ × 35◦ multi-cam panorama

sementics 2D 3D 3D 3D N.A. N.A. N.A. 3D
scale absolute absolute absolute absolute relative absolute absolute absolute

max depth (indoor) (indoor) (indoor) ∞ (relative) 80m 50m ∞

Table 1: Comparing HoliCity with existing datasets for 3D reconstruction and scene understanding. We list the features of
NYUv2 [42], ScanNet[14], Stanford-2D-3D-Semantics [1], SYNTHIA [47], MegaDepth [30], KITTI [20], and RobotCar
[37]. The© in the normal and plane rows represents that it might be possible to use fitting algorithms such as J-Linkage [54]
to get the annotations, but the quality might suffer due to the noise in point clouds.

Outdoor Datasets. Due to the high cost and the limitation
of LiDAR systems, acquiring 3D measurements for out-
door scenes is difficult. Publicly available datasets created
with LiDAR technology, such as KITTI [20] and RobotCar
[37], have a relatively small scale and low spatial resolu-
tion, and mainly focus on the driving scenarios where the
camera is facing toward the road. Recently, more outdoor
datasets emerge by leveraging structure-from-motion (SfM)
and multi-view stereo (MVS) on web imagery in-the-wild,
such as MegaDepth [30], and Web Stereo Video Dataset
[57]. These datasets provide depth information at a low
cost with the expense of quality, because visual 3D recon-
struction is not really accurate or robust for random Internet
images. In addition, previous 3D outdoor datasets mainly
use point clouds as their representation, which are usually
noisy. Hardly any of them provide structured ground-truths
such as lines, wireframes, segmented 3D planes, and identi-
fied buildings for structured urban scene understanding. In
comparison, HoliCity offers high-quality CAD models and
ground truth of holistic 3D structures that cover an unprece-
dented range of areas and viewpoints at the scale of a city
(Figures 1 and 2).

Indoor Datasets. Thanks to increasingly affordable in-
door dense depth sensors such as Kinect and RealSense,
high-quality real-world indoor 3D data can be produced on
a massive scale. Datasets like NYUv2 [42] provide RGBD
images for a variety of indoor scenes. Recent datasets such
as SUN3D [65], ScanNet [14], Stanford-2D-3D-Semantics
[1], andMatterport3D [9] provide surface reconstruction re-
sults and 3D sementics annotation in addition to depthmaps.

The quality of indoor datasets often varies from scenes to
scenes, depending on how well the scene is scanned. Com-
pared to HoliCity that provides accurate CAD models de-
signed for learning holistic structures, the noises, holes, and
misalignments in the point clouds of these indoor datasets
make them not ideal for extracting high-level 3D abstrac-
tions. More importantly, our experiment shows that it is
unlikely that a network can generalize from indoor train-
ing data to outdoor 3D tasks, due to the significant domain
gaps.

3. Exploring HoliCity
Our goal is to develop a large-scale outdoor 3D dataset

that is rich of holistic structural information. To this end,
HoliCity uses commercially available CADmodels provided
by AccuCities1, which are reconstructed and built using
photogrammetry from high-resolution aerial imagery, each
with accurately-recorded GPS position, height, tilt, pitch,
and roll. Aerial photogrammetry is a mature technique and
it has been widely used to build models with different levels
of details for city planning in the field of geographic in-
formation systems (GIS). As a result, we are able to get the
CADmodels that cover a wide range of city areas. The CAD
models we use contain details of building features with up
to 15 cm accuracy, according to the provider.

To make the CAD models useful for image-based tasks,
we need to precisely align the CAD models with images
taken from the ground. To do that, we collect the panorama
images from Google Street View that cover the same area in

1https://www.accucities.com/
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Figure 3: Statistics of the HoliCity dataset. We show the number of annotations per panorama image to register it to the
CAD model (3a); the reprojection errors of annotated 3D points on panoramas (3b) and the occurrence of planes on different
panoramas (3c).

the city as the CADmodels, alongwith their geotags. To fur-
ther increase the alignment accuracy between the panoramas
and the CAD models, we implement an annotation software
for fine-tuning the geolocation of panoramas to precisely lo-
calize them to the CAD models (See Section 4 for technical
details).

Table 1 summarizes the difference between our dataset
and other existing datasets. Compared to the previous 3D
outdoor datasets, HoliCity has its advantage on the following
aspects:

Holistic Structures. With CAD models, it is straightfor-
ward to extract high-quality holistic structures such as cor-
ners, lines, planes, and even curved surfaces from HoliCity
compared to the point clouds, as shown in the second row of
Figure 2. HoliCity also supports traditional low-level repre-
sentations such as depth maps and normal maps (Figure 1e),
as well as rendering the maps of semantics annotations of
roads, buildings, curbs, sky, water, and others, which have
already been annotated in the CAD model. In contrast,
most existing outdoor datasets use point clouds as the rep-
resentation. Due to the limitation of LiDAR technology and
costs, the point clouds are often too sparse and too noisy for
an algorithm to extract such high-level structures reliably.
Hardly any of existing outdoor datasets provide high-level
structure annotations such as lines, wireframes, segmented
surfaces, and identified buildings. The ground truth seman-
tic segmentation also needs to be labeledmanually afterward
[14, 9].

Coverage. Compared to other datasets, HoliCity is able to
cover a much larger area of more than 20 km2 in downtown
London with more diverse urban scenes and viewpoints,
thanks to the existing CAD models and street-view panora-
mas. Figure 1b shows the coverage map that is aligned with
Google Maps and compares it against the Oxford RobotCar
dataset. HoliCity contains 6,300 panorama images from di-
verse viewpoints. We note that it might look like that our

dataset has fewer images than other datasets, it is actually
fairly large among panorama-based ones, such as Stanfold-
2D-3D [1] (1,413 images), and SUN3D [65] (6,161 images).
For the datasets in Table 1 with much higher image counts,
their images are mostly extracted from videos, which are
highly repetitive and blurry. Therefore, we think “coverage”
is a more fair metric for evaluating the size and variety of a
dataset, especially considering that our dataset already have
had a reasonable density of viewpoints as seen in Figure 1b.
Accuracy. We carefully align the panoramas with the
CAD model using a reasonable number of annotated cor-
respondence points between them, as shown in Figure 3a.
This is because the original geolocation of Google Street
View images is not precise, so we re-estimate the camera
pose by minimizing the reprojection error of our annota-
tions. Figure 3b shows the reprojection error of annotated
points between the images and the CADmodel. We find that
for an average image, the median reprojection error is less
than half a degree and the 95th percentile does not exceed
1.2 degrees. Besides the accuracy of camera registration,
our CAD model-based dataset does not have constraints on
maximum depth, unlike the depth obtained from LiDAR.
Hence it might be more suitable for evaluating image-based
3D reconstruction algorithms.
Panorama. HoliCity uses the panorama images from
Google Street Viewwith resolution 13312×6656. This way,
our dataset can capture the full view from each viewpoint
and it is not biased towards any directions or landmarks. It
also gives us extra flexibility to render many times more per-
spective images and emulate cameras of different types. In
contrast, images from previous outdoor datasets are mainly
captured by the front-facing cameras that are towards roads.
The field of views (FoVs) is limited and the area of interest
is biased.
Multi-view. The number of occurrences of each 3D plane
in our panorama database is shown in Figure 3c. More
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than half of the planes occur in more than one image and
about a third of planes occur in more than two images. This
means that our dataset can support the 3D vision research
that requires multi-view correspondence between images,
e.g., structure-from-motion, multi-view stereopsis, and neu-
ral renderings.
Time Span. Most of existing 3D outdoor datasets are col-
lected in short periods of time, as shown in the row “time
span” of Table 1. In contrast, HoliCity utilizes the panorama
images from Google Street View, which are captured during
a span of over 10 years. This greatly increases the variety of
data, which can benefit learning-based methods and bring
additional challenges to tasks.

4. Building HoliCity
4.1. City Data Collection

3D Models. Although there exist many public city CAD
models from the GIS community [28, 55] and municipal-
ity governments2, determining their quality is hard as these
datasets are built for different purposes. In this project, we
use the commercially available CAD model from AccuCi-
ties. Their CADmodel covers the area of downtown London
and comeswith two levels of details. The low-resolution ver-
sion (cover 20 km2) has details accurate to 2m, while the
high-resolution version (covers 4 km2) are accurate to 15cm
in all three axes. The CAD model is stored in the mesh
format and each surface is tagged with semantic types such
as BUILDING, TERRAIN, BRIDGE, TREE, etc.
Street-View Images. Wecollect street-viewpanorama im-
ages from Google Street View. At each viewpoint, we have
a 360◦ panorama image along with the geographic data of
the camera from GPS and IMUs: 1) latitude and longitude
in WGS84 coordinate; 2) azimuth, the angle between the
forward-up plane of the camera and geographic north; 3) a
unit vector representing the up direction of the camera with
respect to the direction of gravity. The geographic infor-
mation along from Google Street View is not sufficient for
accurately registering the camera pose between the CAD
model and the panorama images. First, we do not have the
elevation of the camera. We estimate the initial z of the
camera by adding 2.5m (the height of the camera on the
car) to the ground elevation, as the terrain is provided in
our CAD model. Second, the provided GPS and IMU data
are not accurate enough for a decent alignment between the
panorama images and the CADmodel. Therefore, we resort
to human annotation for registration.

4.2. Annotation Pipeline

Our annotation pipeline contains two steps: 1) registering
the CAD model with the WGS84 coordinate by annotating

2Related resources are summarized at https://3d.bk.tudelft.nl/
opendata/opencities.

key points on Google Maps and CADmodels; 2) fine-tuning
the registration by labeling the 2D-3D correspondence be-
tween the vertices of the CAD model and the pixels of the
panorama.
Geotagging the CAD Models. In the first step, we register
the CADmodel with theWGS84 coordinate used by Google
Street View. To do that, we annotate 44 corresponding 2D
locations on both Google Maps and our CAD model. We
label most of the points on the inner corners of roof ridges to
maximize the registration accuracy. We employ a nonlinear
mesh deformation model for registration. Let XWGS and
XCAD be the 2D coordinates of the points on Google Maps
and our CAD models and Γ be the mapping from XCAD to
XWGS parameterized by Ω. Mathematically, we have

Γ(XCAD,Ω) = XWGS (1)

Here, we useΩ[x, y] ∈ R2 is a 2D lookup table andΓ simply
bilinear interpolates Ω and returns Ω[XCAD]. We can find
the optimal Ω̂ by optimizing

min ‖Γ(XCAD,Ω)−XWGS‖22 + λ‖∆Ω‖2F , (2)

where ∆Ω is the Laplacian of Ω. The Laplacian term serves
as a regularization to keep the transformation smooth and
reduce overfitting. The objective function is convex, so
we can solve it and find the global optimal solution. We
do a 44-fold cross-validation in order to determine the best
regularization coefficient λ. The final average and max-
imum errors are 39cm and 1.5m in the cross-validation,
respectively. For reverse mapping from the WGS84 co-
ordinate to the CAD model, we simply use the Newton-
Gaussian algorithm to find the optimal XCAD that mini-
mizes ‖Γ(XCAD, Ω̂) = XWGS‖22.
Per-Image Fine-Tuning. In the second step, we fine-tune
the camera pose for each panorama image. For each image,
we first ask the annotator whether this is an indoor image or
outdoor image. We discard all of the indoor images. Next,
we ask the annotator to label some pairs of corresponding
points on the CAD model and the panorama image. We
provide a labeling software so that an annotator can switch
between the 3Dmodel and the panorama image, click to add
a point on them, and optimize the camera pose to minimize
the reprojection error. We show the user interface of our
annotation tool in Figure 9 of the supplementary material.
We instruct the annotator to only put points on roof corners
if possible. This is because our CAD model is made from
aerial images, and therefore the locations of roof corners
are usually much more reliable. We ask annotators to label
at least 8 pairs of corresponding points for each viewpoint
unless there not exist enough buildings in that scene.

Because we have a good initialization of the camera pose
for each panorama image from the IMU data, we apply Lev-
enbergâĂŞMarquardt algorithm to compute the camera pose
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that minimizes the nonlinear angular reprojection error of
the corresponding points. Mathematically, letxi ∈ S3 be the
unit vector representing the ray direction of the ith labeled
point on the panorama image with respect to the camera and
Xi ∈ R3 be the coordinate of the corresponding labeled
vertex in the world space of the CAD model. The problem
can be formulated as finding the best 6-DoF panorama cam-
era pose Θ (parameterized by its location, azimuth, and up
direction) that minimizes the following reprojection error:

min
Θ

n∑
i=1

arccos2 (〈xi,PΘ(Xi)〉) , (3)

where PΘ projects the world-space coordinate to the
panorama space S3 with respect to the camera pose Θ.

5. Experiments

In this section, we will justify the necessity of data plat-
forms based on CAD models, e.g., HoliCity, for 3D vision
research. We conduct experiments on the tasks of surface
segmentation (high-level representation) and surface nor-
mal estimation (low-level representation) to demonstrate the
use of HoliCity and study of its generalizability from and
to other datasets. The reason we choose surface segmenta-
tion and normal estimation is because previously researchers
hardly test their methods on outdoor environments for these
tasks. For example, existing works on surface normal es-
timation [16, 4, 58, 24] only demonstrate their results on
indoor scenes. We hypothesize that this is because the quasi-
dense and noisy points clouds from outdoor datasets cannot
reliably provide the direction of surface normal.

In the task of surface segmentation, an algorithm takes
RGB images as input and outputs regions that are considered
as a continuous smooth surface, as shown in the second row
of Figure 2. Surface segmentation is useful for applications
in AR/VR such as object placement. It can be viewed as
generalized plane detection [33], in which the results include
curved surfaces in addition to flat planes. Prior to HoliCity,
methods of plane detection are designed for indoor datasets
[33, 32, 69] or synthetic urban scenes [68] only, probably
because it is too hard to extract high-quality ground truth
planes fromnoisy point clouds in real-world outdoor datasets
(Section 2).

We note that the uses of HoliCity are not limited to the
aforementioned tasks. With the existence of CAD models,
researchers have the freedom to process and convert our
data into a wide range of representations and extract holistic
structures. In the supplementary materials, we also report
the results of different neural networks on tasks of visual
relocalization, 3D plane detection, depth estimation, and
vanishing point detection.

5.1. Data Processing

Splitting. We provide two different splits of viewpoints as
training, validation, and testing sets.
1. data are split randomly for tasks like relocalization;
2. data are split according to x and y coordinates so that

there is no spatial overlap between each set. This is the
default split and we use it to study the generalizability
of HoliCity on tasks such as normal estimation and
surface segmentation.

Rendering. As most existing algorithms take perspective
images as input, we provide the perspective renderings for all
the viewpoints. For each panorama, we sample 8 views with
evenly-spaced (45 degrees apart) yaw angles and randomly
sampled pitch angles between 0 and 45 degrees. We use the
camera with a 90-degree field of view and render the images
with resolution 512 × 512. We render depth maps, normal
maps, and semantic segmentation (Figures 1e and 2) from
the CADmodel with the same specifications using OpenGL.
Surface Segmentation. One advantage of HoliCity over
traditional LiDAR-based outdoor datasets such as KITTI
[20] andRobotCar [37] is that the CADmodel fromHoliCity
could provide a structured and accurate representation of
surfaces, which makes extracting high-level representations
more reliable. Here, we briefly describe our algorithm of
extracting the surface segmentation from HoliCity. The
sampled results are shown in the second row of Figure 2.

The CAD model in our dataset is represented as a set of
polygons of surfaces. We do a breadth-first-search (BFS)
from each polygon to compute the surface segments that
this polygon belongs to. For each nearby polygon found
during the BFS, we add it into the current segments if the
(approximated) curvature at the intersection line between
the adjacent polygons is less than a threshold value. This
threshold controls the minimal curvature required for split-
ting a surface segment. Because the provided CAD model
is not a perfect manifold, we treat two polygons as neighbors
if there exists a vertex on each of them whose distance is
smaller than a threshold distance. This distance also con-
trols the granularity of the resulting segments. Increasing
its value removes small segments.

5.2. Settings and Baselines

Although it is hard to directly extract high-quality sur-
face segments and normal maps from traditional outdoor
datasets, it is still possible to train models on an indoor
or synthetic outdoor dataset and then apply them to a real-
world outdoor dataset. Therefore, we design experiments
to evaluate the feasibility of such an approach and justify
the necessity of HoliCity. Besides, we test how well the
model trained on HoliCity can generalize to other street-
view datasets such as MegaDepth [30].
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(a) RGB image
of HoliCity
(input)

(b) Ground truth
of HoliCity
(segment)

(c) [22] trained
on HoliCity
(segment)

(d) [22] trained
on ScanNet
(segment)

(e) [69] trained
on HoliCity
(segment)

(f) [69] trained
on ScanNet
(segment)

(g) [67] trained
on SYNTHIA
(segment)

(h) Ground truth
of HoliCity
(normal)

(i) [46] trained
on HoliCity
(normal)

(j) [46] trained
on ScanNet
(normal)

Figure 4: Qualitative results of models evaluated on HoliCity. We test models of MaskRCNN [22], Associative Embedding
[69], PlaneRecover [67], and UNet [46] that are trained on HoliCity, ScanNet [14], and SYNTHIA [47] on HoliCity.

(a) RGB image
of MegaDepth

(input)

(b) [22] trained
on HoliCity
(segment)

(c) [22] trained
on ScanNet
(segment)

(d) [69] trained
on HoliCity
(normal)

(d) [69] trained
on ScanNet
(normal)

(e) [67] trained
on SYNTHIA
(segment)

(f) [46] trained
on HoliCity
(normal)

(g) [46] trained
on ScanNet
(normal)

Figure 5: Qualitative results of models evaluated on images from the MegaDepth dataset [30]. We test models of MaskRCNN
[22], Associative Embedding [69] and UNet [46] trained on HoliCity, ScanNet, and SYNTHIA. Models are not fine-tuned on
the targeting dataset (MegaDepth).

(a) RGB image
of SYNTHIA

(input)

(a) Ground truth of
SYNTHIA
(segment)

(b) [22] trained
on HoliCity
(segment)

(c) [67] trained
on SYNTHIA
(segment)

Figure 6: Qualitative results evaluated on the SYNTHIA
dataset. We test our MaskRCNN model and [67] trained on
HoliCity and SYNTHIA, respectively.

Datasets. We use HoliCity (ours), ScanNet [14] (indoor),
SYNTHIA (synthetic outdoor) as the training datasets.
We evaluate the trained models on images from HoliCity,
MegaDepth [30], and SYNTHIA. We perform both quali-
tative and quantitative comparison on HoliCity and SYN-
THIA, while we only perform the qualitative comparison on
street-view images of MegaDepth because the ground truth
surface segmentation and surface normal are not provided.

Surface Segmentation. We include three baseline meth-
ods for surface segmentation: MaskRCNN [22], Associative
Embedding [69], and PlaneRecover [68]. MaskRCNN is the
state-of-the-art method for instance segmentation. We use
the implementation fromDetectron2 [64] and train the mod-
els by ourselves. Associative Embedding is a method for
indoor plane detection. We use its official pre-trained model
on ScanNet and retrain the Associative Embedding model
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Methods Training
Datasets

Surface Segmentation Normal Est.
AP50 AP75 mAP Mean Error

MaskRCNN [22] HoliCity 42.0 19.8 21.9
ScanNet 5.0 0.6 1.7

Associative
Embedding [69]

HoliCity 20.2 8.5 9.9
ScanNet 3.3 0.6 1.1

UNet [46] HoliCity 22.6◦

ScanNet 46.3◦

Table 2: Results of surface segmentation and normal esti-
mation evaluated on the validation split of HoliCity. Meth-
ods are trained on HoliCity (our dataset), ScanNet (in-
door dataset) [14], and SYNTHIA [47] (synthetic outdoor
dataset) and tested on HoliCity without fine-tuning. We
report the AP metrics for surface segmentation and mean
angular error for normal estimation.

on HoliCity from scratches for comparison. PlaneRecover
is an approach designed for SYNTHIA [47]. We evaluate
its official pre-trained model.
Normal Estimation. We report the performance of UNet
[46]. We train the models on all datasets by ourselves.

5.3. Results and Discussions

We show the qualitative results evaluated on the HoliCity
dataset of multiple methods in Figure 4, in which we trained
the models of MaskRCNN [22], Associative Embedding
[69], PlaneRecover [67], and UNet [46] on HoliCity (ours)
ScanNet [14] (indoor dataset), and SYNTHIA [47] (syn-
thetic outdoor dataset) on the task of surface segmentation
and normal estimation. We find that for both tasks methods
trained on ScanNet and SYNTHIA do not generalize well to
HoliCity, which is probably due to the domain gap between
training sets and testing sets. This can also be verified by the
quantitative metrics in Table 2. We can see that the meth-
ods trained on indoor or synthetic outdoor datasets perform
much worse on real-world outdoor scenes than the methods
trained on HoliCity. We conclude that for existing methods
such as MaskRCNN and Associative Embedding, a dataset
such as HoliCity is necessary for the tasks of surface seg-
mentation and normal estimation in outdoor environments.

We also conduct the cross-dataset experiment on HoliC-
ity and synthetic SYNTHIA datasets for surface segmen-
tation. In this experiment, we use the official plane de-
tection model trained on SYNTHIA from [67] and train
the MaskRCNN [22] model on HoliCity. Then, we evaluate
bothmodels onHoliCity and SYNTHIA.We show the quan-
titative results in Table 3. We find that the model trained
on HoliCity can generalize to a synthetic outdoor dataset
such as SYNTHIA well, while the model trained on SYN-
THIA completely fails on HoliCity. Such observations also
apply to the qualitative results in Figures 4 and 6, where
the HoliCity-trained model recovers most of the building

Training Datasets (Methods) Testing Datasets (AP50)
HoliCity SYNTHIA

HoliCity (MaskRCNN [22]) 42.0 36.1
SYNTHIA (PlaneRecover [67]) 1.90 40.6

Table 3: Results of surface segmentation cross-trained and
evaluated on the validation split of HoliCity and SYNTHIA
[47]. We test our MaskRCNNmodel [22] trained on HoliC-
ity and the official PlaneRecover model trained on SYN-
THIA from [67]. Models are not fine-tuned on testing
datasets.

surfaces in SYNTHIA despite the differences between the
definitions of surface segments in HoliCity and planes in
[68]. We hypothesize that the causes of these phenomena
are due to the wider variety of scenes covered by HoliCity,
compared to the scenes from SYNTHIA.

In fact, not only methods trained on ScanNet and SYN-
THIA does not generalize well to HoliCity, they generalize
well to images from other outdoor datasets as well, such
as MegaDepth [30], as shown in Figure 5. In comparison,
methods trained on HoliCity can produce much better sur-
face segmentation and normal maps on these images, which
shows HoliCity’s potential generalizability to general out-
door imagery.

Finally, we summarize our observations as followings:
1. previous research of plane detection and normal esti-

mation hardly experiments on outdoor datasets;
2. HoliCity can provide both high-quality holistic struc-

tures (e.g., surface segments) and low-level represen-
tations (e.g., normal maps) of urban environments;

3. models trained on indoor or synthetic outdoor datasets
cannot generalize well to real-world outdoor datasets;

4. models trained on HoliCity can generalize to synthetic
outdoor scenes;

5. models trained onHoliCity can generalize to real-world
street-view imagery from a different dataset.

These observations indicate thatHoliCity is an indispensable
data platform of urban environments for future research of
3D vision.

6. Conclusions and Future Work
In this work, we introduce a novel city-scale dataset

HoliCity that consists of highly accurate annotation between
a large set of 2D panorama images and the associated 3D
CAD models. The established rigorous annotation pipeline
and tools developed may allow us to continue to increase the
scale and richness of the dataset in the future. This dataset
can support studying and evaluating a wide spectrum of 3D
vision methods, from low-level to high-level. Our careful
evaluation of the state of art methods (trained on existing
and our datasets) has revealed serious lack of generalizabil-
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ity of existing methods, especially to a large-scale diverse
outdoor dataset like ours. Arguably the greatest value of
this dataset is to support developing new methods than can
learn to exploit holistic or semantic structures of the scene
to achieve highly accurate and robust reconstruction, local-
ization, and augmentation within a city-scale environment.
Currently, HoliCity focuses on modeling the building archi-
tectures. In the future, we will also extend the datasets to
model the moving objects in urban environments, including
pedestrians and automobiles.

A. Supplementary Material
A.1. Random Sampled Visualization of HoliCity

In order to visualize the overall alignment quality of our
dataset, we show random sampled images from HoliCity
overlaid with the surface segmentation in Figure 7 (high-
resolution CAD models) and Figure 8 (low-resolution CAD
models). For the overlays from low-resolution CADmodels,
there are slightly more model errors and less details com-
pared to the overlays from high-resolution CAD models,
especially for the regions near the ground.

A.2. Labeling Tools

As introduced in Section 4, we build the correspondence
between the CADmodels and the panorama images through
labeling pairs of corresponding points on them. Figure 9
shows our labeling tool. The annotators use our labeling
tool to put points on the images and models. Within our
labeling tool, they can freely navigate in the London city
with keyboard shortcuts and adjust the camera pose on the
left control panel. They can switch between 3D models and
re-projected panorama images with keyboard shortcuts. To
add points to the CAD models, users could click around the
vertices of the mesh and the annotation tool will automati-
cally snap the point to the nearest visible vertices. The users
could also add points on the panorama images with mouse
clicks. When the annotator thinks he has labeled enough
points, he could optimize the camera pose with current cor-
respondence by clicking the “Optimize” button on the left
control panel.

We instruct annotators to label points only on the corners
of the building roof if possible. This is because the CAD
models are made from aerial images, and the roof features of
the CADmodel are usually much more reliable. For current
batches, each image contains at least 8 pairs of labeled cor-
responding pairs unless buildings in the panorama images
are highly occluded.

A.3. Monocular Depth Estimation

Monocular depth estimation has been a popular task since
the beginning of deep learning [16]. To demonstrate our
work can better support this task than synthetic datasets,

Training Datasets Testing Datasets (SIL [16] Error)
HoliCity SYNTHIA MegaDepth

HoliCity 0.101 0.237 0.088
SYNTHIA 0.353 0.054 0.246

Table 4: Results of monocular depth estimation cross-
trained and evaluated on the validation splits of HoliCity,
SYNTHIA, and scene 162 of MegaDepth.

we run the following benchmarks: We train UNet [46] on
HoliCity and SYNTHIA (synthetic outdoor) and test them
on the validation splits of HoliCity, SYNTHIA, and scene
162 of MegaDepth. We show the qualitative and quantita-
tive results in Figure 10 and Table 4. The goal is to com-
pare the generalizability of HoliCity-trained models and the
SYNTHIA-train models. We report the scale-invariant er-
ror (SIL) [16] because depth maps of MegaDepth only have
relative scales due to the usage of SfM.Here we have two ob-
servations. First, methods evaluated on HoliCity has larger
errors than the methods evaluated on SYNTHIA. This might
be because scenes of HoliCity has more varieties than the
scenes of SYNTHIA. Second, methods trained on HoliC-
ity has better performance when tested on other outdoor
datasets (MegaDepth) than methods trained on SYNTHIA.
This shows that HoliCity-trained models have better gener-
alizability than that of SYNTHIA-trained models, which is
probably because images in HoliCity are more realistic and
versatile than the images from the synthetic dataset.

A.4. Vanishing Point Detection

Vanishing points are an important concept in 3D vision,
especially in outdoor urban environments. This is because
vanishing points provide information about camera poses
with respect to local building structures. Generating van-
ishing points with CAD models is relatively easy and ac-
curate. First, because all the scene contains the upward
vertical vanishing points, we compute them by projecting
the up vector (0, 0, 1) into the image with its camera pose.
Second, we need to find horizontal vanishing points. We
solve this by clustering the surface normal with DBSCAN
[7] and find the direction of horizontal vanishing points by
computing the cross product of the surface normal and the
up vector. We use DBSCAN because it does not require a
predetermined number of clustering centers, and we want
the number of horizontals vanishing variable. This avoids
the limitation of the strong Manhattan assumption that is
used by previous datasets including YUD [15], ECD [5],
and HLW [63].

We test two algorithms, the conventional LSD [56, 19] +
J-Linkage [54] and the recent learning-based NeurVPS [71].
The former uses line segment detectors to detect the lines
and then clusters them according to their intersection using
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Figure 7: Random sampled perspective images overlaid with surface segments from high-resolution CAD models.
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Figure 8: Random sampled perspective images overlaid with surface segments from low-resolution CAD models.
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(a) UI when annotating the 3D model. (b) UI when annotating panorama images.

Figure 9: User interface for panorama-to-model corresponding point annotation.

(a) RGB image
(input)

(b) Ground truth
(depth)

(c) Inferred [46]
(depth)

(d) Ground truth
(normal)

(e) Inferred [46]
(normal)

Figure 10: Visualization of results on tasks of monocular
normal and depth estimation. Models are trained and eval-
uated on HoliCity.

J-Linkage. NeurVPS, on the other hand, uses a coarse-to-
fine strategy and tests whether a vanishing point candidate is
valid with a conic convolutional neural network. Figure 11
shows the results of both algorithms. The median error of
NeurVPS is around 0.5 degrees for the up vanishing points
and 1.5 degrees for all vanishing points. This shows that
the camera pose of our dataset should at least be around that
accuracy. Besides, we find that learning-based NeurVPS
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Figure 11: Angular errors of vanishing points. The left
figure shows the plot of angular errors vs. percentages of
algorithms when predicting the upward vanishing points,
while the right figure shows the plot of angular errors vs.
percentages of algorithms when predicting all the vanishing
points.

has the similar performance as LSD when considering all
the vanishing points. This is probably because NeurVPS
has not yet been optimized for detecting a variable number
of vanishing points.

A.5. Relocalization

Precise camera localization from images is key to many
3D vision tasks, such as visual compasses, navigation, au-

13



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance error (km)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Camera pose estimation (translation)

DSAC++
PoseNet

0 20 40 60 80 100 120 140 160 180
Angular error (degree)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Camera pose estimation (rotation)

DSAC++
PoseNet

Figure 12: Orientation and Localization errors for existing
camera localizationmethods trained and tested using HoliC-
ity dataset.

tonomous driving, and augmented reality. Due to the cost,
existing outdoor datasets only capture limited regions [49]
or a few paths [36]. In comparison, HoliCity provides an
accurate camera pose densely sampled in an entire city with
various view angles. We believe that a method with decent
performance on our dataset will be useful for many real-
world applications. Here, we benchmark state-of-the-art
methods on our dataset and find a significant gap between
the existing techniques and real-world challenges.

We choose to evaluate two recent deep learning-based
methods, namely PoseNet [27] and DSAC++ [8] as two rep-
resentative works related to direct regression and scene co-
ordinate estimation. Figure 12 summarizes the errors in the
camera distance and orientation predicted. The Y-axis rep-
resents the threshold of the prediction error and the X-axis is
the percentage of frames in the test data with prediction error
smaller than the threshold. The mean errors in location for
PoseNet and DSAC++ are 921m and 2, 086m, respectively.
The mean orientation errors for them are 47.1◦ and 124.2◦,
respectively. Although such results look problematic, we do
try our best to tune the parameters of the networks and find
it hard to reach a reasonable performance on HoliCity. We
do observe that in the original paper, their results on scenes
such as “Office” have similar accuracy as ours. We think that
the difficulty of HoliCity for relocalization comes from its
massive scale (20km2), relatively large baseline (Figure 1b),
and long span (Section 3), hence resulting in huge prediction
errors for these learning-based relocalization approaches.
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